/* Permuted index for GNU, with keywords in their context. Copyright (C) 1990, 1991, 1993, 1998-2008 Free Software Foundation, Inc. François Pinard , 1988. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . François Pinard */ #include #include #include #include #include "system.h" #include "argmatch.h" #include "diacrit.h" #include "error.h" #include "quote.h" #include "quotearg.h" #include "regex.h" #include "xstrtol.h" /* The official name of this program (e.g., no `g' prefix). */ #define PROGRAM_NAME "ptx" /* TRANSLATORS: Please translate "F. Pinard" to "François Pinard" if "ç" (c-with-cedilla) is available in the translation's character set and encoding. */ #define AUTHORS proper_name_utf8 ("F. Pinard", "Fran\xc3\xa7ois Pinard") /* Number of possible characters in a byte. */ #define CHAR_SET_SIZE 256 #define ISODIGIT(C) ((C) >= '0' && (C) <= '7') #define HEXTOBIN(C) ((C) >= 'a' && (C) <= 'f' ? (C)-'a'+10 \ : (C) >= 'A' && (C) <= 'F' ? (C)-'A'+10 : (C)-'0') #define OCTTOBIN(C) ((C) - '0') /* Debugging the memory allocator. */ #if WITH_DMALLOC # define MALLOC_FUNC_CHECK 1 # include #endif /* Global definitions. */ /* FIXME: There are many unchecked integer overflows in this file, that will cause this command to misbehave given large inputs or options. Many of the "int" values below should be "size_t" or something else like that. */ /* Reallocation step when swallowing non regular files. The value is not the actual reallocation step, but its base two logarithm. */ #define SWALLOW_REALLOC_LOG 12 /* Imported from "regex.c". */ #define Sword 1 /* Program options. */ enum Format { UNKNOWN_FORMAT, /* output format still unknown */ DUMB_FORMAT, /* output for a dumb terminal */ ROFF_FORMAT, /* output for `troff' or `nroff' */ TEX_FORMAT /* output for `TeX' or `LaTeX' */ }; static bool gnu_extensions = true; /* trigger all GNU extensions */ static bool auto_reference = false; /* refs are `file_name:line_number:' */ static bool input_reference = false; /* refs at beginning of input lines */ static bool right_reference = false; /* output refs after right context */ static int line_width = 72; /* output line width in characters */ static int gap_size = 3; /* number of spaces between output fields */ static const char *truncation_string = "/"; /* string used to mark line truncations */ static const char *macro_name = "xx"; /* macro name for roff or TeX output */ static enum Format output_format = UNKNOWN_FORMAT; /* output format */ static bool ignore_case = false; /* fold lower to upper for sorting */ static const char *break_file = NULL; /* name of the `Break characters' file */ static const char *only_file = NULL; /* name of the `Only words' file */ static const char *ignore_file = NULL; /* name of the `Ignore words' file */ /* Options that use regular expressions. */ struct regex_data { /* The original regular expression, as a string. */ char const *string; /* The compiled regular expression, and its fastmap. */ struct re_pattern_buffer pattern; char fastmap[UCHAR_MAX + 1]; }; static struct regex_data context_regex; /* end of context */ static struct regex_data word_regex; /* keyword */ /* A BLOCK delimit a region in memory of arbitrary size, like the copy of a whole file. A WORD is something smaller, its length should fit in a short integer. A WORD_TABLE may contain several WORDs. */ typedef struct { char *start; /* pointer to beginning of region */ char *end; /* pointer to end + 1 of region */ } BLOCK; typedef struct { char *start; /* pointer to beginning of region */ short int size; /* length of the region */ } WORD; typedef struct { WORD *start; /* array of WORDs */ size_t alloc; /* allocated length */ size_t length; /* number of used entries */ } WORD_TABLE; /* Pattern description tables. */ /* For each character, provide its folded equivalent. */ static unsigned char folded_chars[CHAR_SET_SIZE]; /* End of context pattern register indices. */ static struct re_registers context_regs; /* Keyword pattern register indices. */ static struct re_registers word_regs; /* A word characters fastmap is used only when no word regexp has been provided. A word is then made up of a sequence of one or more characters allowed by the fastmap. Contains !0 if character allowed in word. Not only this is faster in most cases, but it simplifies the implementation of the Break files. */ static char word_fastmap[CHAR_SET_SIZE]; /* Maximum length of any word read. */ static int maximum_word_length; /* Maximum width of any reference used. */ static int reference_max_width; /* Ignore and Only word tables. */ static WORD_TABLE ignore_table; /* table of words to ignore */ static WORD_TABLE only_table; /* table of words to select */ /* Source text table, and scanning macros. */ static int number_input_files; /* number of text input files */ static int total_line_count; /* total number of lines seen so far */ static const char **input_file_name; /* array of text input file names */ static int *file_line_count; /* array of `total_line_count' values at end */ static BLOCK text_buffer; /* file to study */ /* SKIP_NON_WHITE used only for getting or skipping the reference. */ #define SKIP_NON_WHITE(cursor, limit) \ while (cursor < limit && ! isspace (to_uchar (*cursor))) \ cursor++ #define SKIP_WHITE(cursor, limit) \ while (cursor < limit && isspace (to_uchar (*cursor))) \ cursor++ #define SKIP_WHITE_BACKWARDS(cursor, start) \ while (cursor > start && isspace (to_uchar (cursor[-1]))) \ cursor-- #define SKIP_SOMETHING(cursor, limit) \ if (word_regex.string) \ { \ regoff_t count; \ count = re_match (&word_regex.pattern, cursor, limit - cursor, 0, NULL); \ if (count == -2) \ matcher_error (); \ cursor += count == -1 ? 1 : count; \ } \ else if (word_fastmap[to_uchar (*cursor)]) \ while (cursor < limit && word_fastmap[to_uchar (*cursor)]) \ cursor++; \ else \ cursor++ /* Occurrences table. The `keyword' pointer provides the central word, which is surrounded by a left context and a right context. The `keyword' and `length' field allow full 8-bit characters keys, even including NULs. At other places in this program, the name `keyafter' refers to the keyword followed by its right context. The left context does not extend, towards the beginning of the file, further than a distance given by the `left' value. This value is relative to the keyword beginning, it is usually negative. This insures that, except for white space, we will never have to backward scan the source text, when it is time to generate the final output lines. The right context, indirectly attainable through the keyword end, does not extend, towards the end of the file, further than a distance given by the `right' value. This value is relative to the keyword beginning, it is usually positive. When automatic references are used, the `reference' value is the overall line number in all input files read so far, in this case, it is of type (int). When input references are used, the `reference' value indicates the distance between the keyword beginning and the start of the reference field, it is of type (DELTA) and usually negative. */ typedef short int DELTA; /* to hold displacement within one context */ typedef struct { WORD key; /* description of the keyword */ DELTA left; /* distance to left context start */ DELTA right; /* distance to right context end */ int reference; /* reference descriptor */ } OCCURS; /* The various OCCURS tables are indexed by the language. But the time being, there is no such multiple language support. */ static OCCURS *occurs_table[1]; /* all words retained from the read text */ static size_t occurs_alloc[1]; /* allocated size of occurs_table */ static size_t number_of_occurs[1]; /* number of used slots in occurs_table */ /* Communication among output routines. */ /* Indicate if special output processing is requested for each character. */ static char edited_flag[CHAR_SET_SIZE]; static int half_line_width; /* half of line width, reference excluded */ static int before_max_width; /* maximum width of before field */ static int keyafter_max_width; /* maximum width of keyword-and-after field */ static int truncation_string_length;/* length of string used to flag truncation */ /* When context is limited by lines, wraparound may happen on final output: the `head' pointer gives access to some supplementary left context which will be seen at the end of the output line, the `tail' pointer gives access to some supplementary right context which will be seen at the beginning of the output line. */ static BLOCK tail; /* tail field */ static int tail_truncation; /* flag truncation after the tail field */ static BLOCK before; /* before field */ static int before_truncation; /* flag truncation before the before field */ static BLOCK keyafter; /* keyword-and-after field */ static int keyafter_truncation; /* flag truncation after the keyafter field */ static BLOCK head; /* head field */ static int head_truncation; /* flag truncation before the head field */ static BLOCK reference; /* reference field for input reference mode */ /* Miscellaneous routines. */ /* Diagnose an error in the regular expression matcher. Then exit. */ static void ATTRIBUTE_NORETURN matcher_error (void) { error (0, errno, _("error in regular expression matcher")); exit (EXIT_FAILURE); } /*------------------------------------------------------. | Duplicate string STRING, while evaluating \-escapes. | `------------------------------------------------------*/ /* Loosely adapted from GNU sh-utils printf.c code. */ static char * copy_unescaped_string (const char *string) { char *result; /* allocated result */ char *cursor; /* cursor in result */ int value; /* value of \nnn escape */ int length; /* length of \nnn escape */ result = xmalloc (strlen (string) + 1); cursor = result; while (*string) { if (*string == '\\') { string++; switch (*string) { case 'x': /* \xhhh escape, 3 chars maximum */ value = 0; for (length = 0, string++; length < 3 && isxdigit (to_uchar (*string)); length++, string++) value = value * 16 + HEXTOBIN (*string); if (length == 0) { *cursor++ = '\\'; *cursor++ = 'x'; } else *cursor++ = value; break; case '0': /* \0ooo escape, 3 chars maximum */ value = 0; for (length = 0, string++; length < 3 && ISODIGIT (*string); length++, string++) value = value * 8 + OCTTOBIN (*string); *cursor++ = value; break; case 'a': /* alert */ #if __STDC__ *cursor++ = '\a'; #else *cursor++ = 7; #endif string++; break; case 'b': /* backspace */ *cursor++ = '\b'; string++; break; case 'c': /* cancel the rest of the output */ while (*string) string++; break; case 'f': /* form feed */ *cursor++ = '\f'; string++; break; case 'n': /* new line */ *cursor++ = '\n'; string++; break; case 'r': /* carriage return */ *cursor++ = '\r'; string++; break; case 't': /* horizontal tab */ *cursor++ = '\t'; string++; break; case 'v': /* vertical tab */ #if __STDC__ *cursor++ = '\v'; #else *cursor++ = 11; #endif string++; break; case '\0': /* lone backslash at end of string */ /* ignore it */ break; default: *cursor++ = '\\'; *cursor++ = *string++; break; } } else *cursor++ = *string++; } *cursor = '\0'; return result; } /*--------------------------------------------------------------------------. | Compile the regex represented by REGEX, diagnose and abort if any error. | `--------------------------------------------------------------------------*/ static void compile_regex (struct regex_data *regex) { struct re_pattern_buffer *pattern = ®ex->pattern; char const *string = regex->string; char const *message; pattern->buffer = NULL; pattern->allocated = 0; pattern->fastmap = regex->fastmap; pattern->translate = ignore_case ? folded_chars : NULL; message = re_compile_pattern (string, strlen (string), pattern); if (message) error (EXIT_FAILURE, 0, _("%s (for regexp %s)"), message, quote (string)); /* The fastmap should be compiled before `re_match'. The following call is not mandatory, because `re_search' is always called sooner, and it compiles the fastmap if this has not been done yet. */ re_compile_fastmap (pattern); } /*------------------------------------------------------------------------. | This will initialize various tables for pattern match and compiles some | | regexps. | `------------------------------------------------------------------------*/ static void initialize_regex (void) { int character; /* character value */ /* Initialize the case folding table. */ if (ignore_case) for (character = 0; character < CHAR_SET_SIZE; character++) folded_chars[character] = toupper (character); /* Unless the user already provided a description of the end of line or end of sentence sequence, select an end of line sequence to compile. If the user provided an empty definition, thus disabling end of line or sentence feature, make it NULL to speed up tests. If GNU extensions are enabled, use end of sentence like in GNU emacs. If disabled, use end of lines. */ if (context_regex.string) { if (!*context_regex.string) context_regex.string = NULL; } else if (gnu_extensions & !input_reference) context_regex.string = "[.?!][]\"')}]*\\($\\|\t\\| \\)[ \t\n]*"; else context_regex.string = "\n"; if (context_regex.string) compile_regex (&context_regex); /* If the user has already provided a non-empty regexp to describe words, compile it. Else, unless this has already been done through a user provided Break character file, construct a fastmap of characters that may appear in a word. If GNU extensions enabled, include only letters of the underlying character set. If disabled, include almost everything, even punctuations; stop only on white space. */ if (word_regex.string) compile_regex (&word_regex); else if (!break_file) { if (gnu_extensions) { /* Simulate \w+. */ for (character = 0; character < CHAR_SET_SIZE; character++) word_fastmap[character] = !! isalpha (character); } else { /* Simulate [^ \t\n]+. */ memset (word_fastmap, 1, CHAR_SET_SIZE); word_fastmap[' '] = 0; word_fastmap['\t'] = 0; word_fastmap['\n'] = 0; } } } /*------------------------------------------------------------------------. | This routine will attempt to swallow a whole file name FILE_NAME into a | | contiguous region of memory and return a description of it into BLOCK. | | Standard input is assumed whenever FILE_NAME is NULL, empty or "-". | | | | Previously, in some cases, white space compression was attempted while | | inputting text. This was defeating some regexps like default end of | | sentence, which checks for two consecutive spaces. If white space | | compression is ever reinstated, it should be in output routines. | `------------------------------------------------------------------------*/ static void swallow_file_in_memory (const char *file_name, BLOCK *block) { int file_handle; /* file descriptor number */ struct stat stat_block; /* stat block for file */ size_t allocated_length; /* allocated length of memory buffer */ size_t used_length; /* used length in memory buffer */ int read_length; /* number of character gotten on last read */ /* As special cases, a file name which is NULL or "-" indicates standard input, which is already opened. In all other cases, open the file from its name. */ bool using_stdin = !file_name || !*file_name || STREQ (file_name, "-"); if (using_stdin) file_handle = STDIN_FILENO; else if ((file_handle = open (file_name, O_RDONLY)) < 0) error (EXIT_FAILURE, errno, "%s", file_name); /* If the file is a plain, regular file, allocate the memory buffer all at once and swallow the file in one blow. In other cases, read the file repeatedly in smaller chunks until we have it all, reallocating memory once in a while, as we go. */ if (fstat (file_handle, &stat_block) < 0) error (EXIT_FAILURE, errno, "%s", file_name); if (S_ISREG (stat_block.st_mode)) { size_t in_memory_size; block->start = xmalloc ((size_t) stat_block.st_size); if ((in_memory_size = read (file_handle, block->start, (size_t) stat_block.st_size)) != stat_block.st_size) { #if MSDOS /* On MSDOS, in memory size may be smaller than the file size, because of end of line conversions. But it can never be smaller than half the file size, because the minimum is when all lines are empty and terminated by CR+LF. */ if (in_memory_size != (size_t)-1 && in_memory_size >= stat_block.st_size / 2) block->start = xrealloc (block->start, in_memory_size); else #endif /* not MSDOS */ error (EXIT_FAILURE, errno, "%s", file_name); } block->end = block->start + in_memory_size; } else { block->start = xmalloc ((size_t) 1 << SWALLOW_REALLOC_LOG); used_length = 0; allocated_length = (1 << SWALLOW_REALLOC_LOG); while (read_length = read (file_handle, block->start + used_length, allocated_length - used_length), read_length > 0) { used_length += read_length; if (used_length == allocated_length) { allocated_length += (1 << SWALLOW_REALLOC_LOG); block->start = xrealloc (block->start, allocated_length); } } if (read_length < 0) error (EXIT_FAILURE, errno, "%s", file_name); block->end = block->start + used_length; } /* Close the file, but only if it was not the standard input. */ if (! using_stdin && close (file_handle) != 0) error (EXIT_FAILURE, errno, "%s", file_name); } /* Sort and search routines. */ /*--------------------------------------------------------------------------. | Compare two words, FIRST and SECOND, and return 0 if they are identical. | | Return less than 0 if the first word goes before the second; return | | greater than 0 if the first word goes after the second. | | | | If a word is indeed a prefix of the other, the shorter should go first. | `--------------------------------------------------------------------------*/ static int compare_words (const void *void_first, const void *void_second) { #define first ((const WORD *) void_first) #define second ((const WORD *) void_second) int length; /* minimum of two lengths */ int counter; /* cursor in words */ int value; /* value of comparison */ length = first->size < second->size ? first->size : second->size; if (ignore_case) { for (counter = 0; counter < length; counter++) { value = (folded_chars [to_uchar (first->start[counter])] - folded_chars [to_uchar (second->start[counter])]); if (value != 0) return value; } } else { for (counter = 0; counter < length; counter++) { value = (to_uchar (first->start[counter]) - to_uchar (second->start[counter])); if (value != 0) return value; } } return first->size - second->size; #undef first #undef second } /*-----------------------------------------------------------------------. | Decides which of two OCCURS, FIRST or SECOND, should lexicographically | | go first. In case of a tie, preserve the original order through a | | pointer comparison. | `-----------------------------------------------------------------------*/ static int compare_occurs (const void *void_first, const void *void_second) { #define first ((const OCCURS *) void_first) #define second ((const OCCURS *) void_second) int value; value = compare_words (&first->key, &second->key); return value == 0 ? first->key.start - second->key.start : value; #undef first #undef second } /*------------------------------------------------------------. | Return !0 if WORD appears in TABLE. Uses a binary search. | `------------------------------------------------------------*/ static int search_table (WORD *word, WORD_TABLE *table) { int lowest; /* current lowest possible index */ int highest; /* current highest possible index */ int middle; /* current middle index */ int value; /* value from last comparison */ lowest = 0; highest = table->length - 1; while (lowest <= highest) { middle = (lowest + highest) / 2; value = compare_words (word, table->start + middle); if (value < 0) highest = middle - 1; else if (value > 0) lowest = middle + 1; else return 1; } return 0; } /*---------------------------------------------------------------------. | Sort the whole occurs table in memory. Presumably, `qsort' does not | | take intermediate copies or table elements, so the sort will be | | stabilized throughout the comparison routine. | `---------------------------------------------------------------------*/ static void sort_found_occurs (void) { /* Only one language for the time being. */ qsort (occurs_table[0], number_of_occurs[0], sizeof **occurs_table, compare_occurs); } /* Parameter files reading routines. */ /*----------------------------------------------------------------------. | Read a file named FILE_NAME, containing a set of break characters. | | Build a content to the array word_fastmap in which all characters are | | allowed except those found in the file. Characters may be repeated. | `----------------------------------------------------------------------*/ static void digest_break_file (const char *file_name) { BLOCK file_contents; /* to receive a copy of the file */ char *cursor; /* cursor in file copy */ swallow_file_in_memory (file_name, &file_contents); /* Make the fastmap and record the file contents in it. */ memset (word_fastmap, 1, CHAR_SET_SIZE); for (cursor = file_contents.start; cursor < file_contents.end; cursor++) word_fastmap[to_uchar (*cursor)] = 0; if (!gnu_extensions) { /* If GNU extensions are enabled, the only way to avoid newline as a break character is to write all the break characters in the file with no newline at all, not even at the end of the file. If disabled, spaces, tabs and newlines are always considered as break characters even if not included in the break file. */ word_fastmap[' '] = 0; word_fastmap['\t'] = 0; word_fastmap['\n'] = 0; } /* Return the space of the file, which is no more required. */ free (file_contents.start); } /*-----------------------------------------------------------------------. | Read a file named FILE_NAME, containing one word per line, then | | construct in TABLE a table of WORD descriptors for them. The routine | | swallows the whole file in memory; this is at the expense of space | | needed for newlines, which are useless; however, the reading is fast. | `-----------------------------------------------------------------------*/ static void digest_word_file (const char *file_name, WORD_TABLE *table) { BLOCK file_contents; /* to receive a copy of the file */ char *cursor; /* cursor in file copy */ char *word_start; /* start of the current word */ swallow_file_in_memory (file_name, &file_contents); table->start = NULL; table->alloc = 0; table->length = 0; /* Read the whole file. */ cursor = file_contents.start; while (cursor < file_contents.end) { /* Read one line, and save the word in contains. */ word_start = cursor; while (cursor < file_contents.end && *cursor != '\n') cursor++; /* Record the word in table if it is not empty. */ if (cursor > word_start) { if (table->length == table->alloc) { if ((SIZE_MAX / sizeof *table->start - 1) / 2 < table->alloc) xalloc_die (); table->alloc = table->alloc * 2 + 1; table->start = xrealloc (table->start, table->alloc * sizeof *table->start); } table->start[table->length].start = word_start; table->start[table->length].size = cursor - word_start; table->length++; } /* This test allows for an incomplete line at end of file. */ if (cursor < file_contents.end) cursor++; } /* Finally, sort all the words read. */ qsort (table->start, table->length, sizeof table->start[0], compare_words); } /* Keyword recognition and selection. */ /*----------------------------------------------------------------------. | For each keyword in the source text, constructs an OCCURS structure. | `----------------------------------------------------------------------*/ static void find_occurs_in_text (void) { char *cursor; /* for scanning the source text */ char *scan; /* for scanning the source text also */ char *line_start; /* start of the current input line */ char *line_scan; /* newlines scanned until this point */ int reference_length; /* length of reference in input mode */ WORD possible_key; /* possible key, to ease searches */ OCCURS *occurs_cursor; /* current OCCURS under construction */ char *context_start; /* start of left context */ char *context_end; /* end of right context */ char *word_start; /* start of word */ char *word_end; /* end of word */ char *next_context_start; /* next start of left context */ /* reference_length is always used within `if (input_reference)'. However, GNU C diagnoses that it may be used uninitialized. The following assignment is merely to shut it up. */ reference_length = 0; /* Tracking where lines start is helpful for reference processing. In auto reference mode, this allows counting lines. In input reference mode, this permits finding the beginning of the references. The first line begins with the file, skip immediately this very first reference in input reference mode, to help further rejection any word found inside it. Also, unconditionally assigning these variable has the happy effect of shutting up lint. */ line_start = text_buffer.start; line_scan = line_start; if (input_reference) { SKIP_NON_WHITE (line_scan, text_buffer.end); reference_length = line_scan - line_start; SKIP_WHITE (line_scan, text_buffer.end); } /* Process the whole buffer, one line or one sentence at a time. */ for (cursor = text_buffer.start; cursor < text_buffer.end; cursor = next_context_start) { /* `context_start' gets initialized before the processing of each line, or once for the whole buffer if no end of line or sentence sequence separator. */ context_start = cursor; /* If a end of line or end of sentence sequence is defined and non-empty, `next_context_start' will be recomputed to be the end of each line or sentence, before each one is processed. If no such sequence, then `next_context_start' is set at the end of the whole buffer, which is then considered to be a single line or sentence. This test also accounts for the case of an incomplete line or sentence at the end of the buffer. */ next_context_start = text_buffer.end; if (context_regex.string) switch (re_search (&context_regex.pattern, cursor, text_buffer.end - cursor, 0, text_buffer.end - cursor, &context_regs)) { case -2: matcher_error (); case -1: break; default: next_context_start = cursor + context_regs.end[0]; break; } /* Include the separator into the right context, but not any suffix white space in this separator; this insures it will be seen in output and will not take more space than necessary. */ context_end = next_context_start; SKIP_WHITE_BACKWARDS (context_end, context_start); /* Read and process a single input line or sentence, one word at a time. */ while (1) { if (word_regex.string) /* If a word regexp has been compiled, use it to skip at the beginning of the next word. If there is no such word, exit the loop. */ { regoff_t r = re_search (&word_regex.pattern, cursor, context_end - cursor, 0, context_end - cursor, &word_regs); if (r == -2) matcher_error (); if (r == -1) break; word_start = cursor + word_regs.start[0]; word_end = cursor + word_regs.end[0]; } else /* Avoid re_search and use the fastmap to skip to the beginning of the next word. If there is no more word in the buffer, exit the loop. */ { scan = cursor; while (scan < context_end && !word_fastmap[to_uchar (*scan)]) scan++; if (scan == context_end) break; word_start = scan; while (scan < context_end && word_fastmap[to_uchar (*scan)]) scan++; word_end = scan; } /* Skip right to the beginning of the found word. */ cursor = word_start; /* Skip any zero length word. Just advance a single position, then go fetch the next word. */ if (word_end == word_start) { cursor++; continue; } /* This is a genuine, non empty word, so save it as a possible key. Then skip over it. Also, maintain the maximum length of all words read so far. It is mandatory to take the maximum length of all words in the file, without considering if they are actually kept or rejected, because backward jumps at output generation time may fall in *any* word. */ possible_key.start = cursor; possible_key.size = word_end - word_start; cursor += possible_key.size; if (possible_key.size > maximum_word_length) maximum_word_length = possible_key.size; /* In input reference mode, update `line_start' from its previous value. Count the lines just in case auto reference mode is also selected. If it happens that the word just matched is indeed part of a reference; just ignore it. */ if (input_reference) { while (line_scan < possible_key.start) if (*line_scan == '\n') { total_line_count++; line_scan++; line_start = line_scan; SKIP_NON_WHITE (line_scan, text_buffer.end); reference_length = line_scan - line_start; } else line_scan++; if (line_scan > possible_key.start) continue; } /* Ignore the word if an `Ignore words' table exists and if it is part of it. Also ignore the word if an `Only words' table and if it is *not* part of it. It is allowed that both tables be used at once, even if this may look strange for now. Just ignore a word that would appear in both. If regexps are eventually implemented for these tables, the Ignore table could then reject words that would have been previously accepted by the Only table. */ if (ignore_file && search_table (&possible_key, &ignore_table)) continue; if (only_file && !search_table (&possible_key, &only_table)) continue; /* A non-empty word has been found. First of all, insure proper allocation of the next OCCURS, and make a pointer to where it will be constructed. */ if (number_of_occurs[0] == occurs_alloc[0]) { if ((SIZE_MAX / sizeof *occurs_table[0] - 1) / 2 < occurs_alloc[0]) xalloc_die (); occurs_alloc[0] = occurs_alloc[0] * 2 + 1; occurs_table[0] = xrealloc (occurs_table[0], occurs_alloc[0] * sizeof *occurs_table[0]); } occurs_cursor = occurs_table[0] + number_of_occurs[0]; /* Define the refence field, if any. */ if (auto_reference) { /* While auto referencing, update `line_start' from its previous value, counting lines as we go. If input referencing at the same time, `line_start' has been advanced earlier, and the following loop is never really executed. */ while (line_scan < possible_key.start) if (*line_scan == '\n') { total_line_count++; line_scan++; line_start = line_scan; SKIP_NON_WHITE (line_scan, text_buffer.end); } else line_scan++; occurs_cursor->reference = total_line_count; } else if (input_reference) { /* If only input referencing, `line_start' has been computed earlier to detect the case the word matched would be part of the reference. The reference position is simply the value of `line_start'. */ occurs_cursor->reference = (DELTA) (line_start - possible_key.start); if (reference_length > reference_max_width) reference_max_width = reference_length; } /* Exclude the reference from the context in simple cases. */ if (input_reference && line_start == context_start) { SKIP_NON_WHITE (context_start, context_end); SKIP_WHITE (context_start, context_end); } /* Completes the OCCURS structure. */ occurs_cursor->key = possible_key; occurs_cursor->left = context_start - possible_key.start; occurs_cursor->right = context_end - possible_key.start; number_of_occurs[0]++; } } } /* Formatting and actual output - service routines. */ /*-----------------------------------------. | Prints some NUMBER of spaces on stdout. | `-----------------------------------------*/ static void print_spaces (int number) { int counter; for (counter = number; counter > 0; counter--) putchar (' '); } /*-------------------------------------. | Prints the field provided by FIELD. | `-------------------------------------*/ static void print_field (BLOCK field) { char *cursor; /* Cursor in field to print */ int base; /* Base character, without diacritic */ int diacritic; /* Diacritic code for the character */ /* Whitespace is not really compressed. Instead, each white space character (tab, vt, ht etc.) is printed as one single space. */ for (cursor = field.start; cursor < field.end; cursor++) { unsigned char character = *cursor; if (edited_flag[character]) { /* First check if this is a diacriticized character. This works only for TeX. I do not know how diacriticized letters work with `roff'. Please someone explain it to me! */ diacritic = todiac (character); if (diacritic != 0 && output_format == TEX_FORMAT) { base = tobase (character); switch (diacritic) { case 1: /* Latin diphthongs */ switch (base) { case 'o': fputs ("\\oe{}", stdout); break; case 'O': fputs ("\\OE{}", stdout); break; case 'a': fputs ("\\ae{}", stdout); break; case 'A': fputs ("\\AE{}", stdout); break; default: putchar (' '); } break; case 2: /* Acute accent */ printf ("\\'%s%c", (base == 'i' ? "\\" : ""), base); break; case 3: /* Grave accent */ printf ("\\`%s%c", (base == 'i' ? "\\" : ""), base); break; case 4: /* Circumflex accent */ printf ("\\^%s%c", (base == 'i' ? "\\" : ""), base); break; case 5: /* Diaeresis */ printf ("\\\"%s%c", (base == 'i' ? "\\" : ""), base); break; case 6: /* Tilde accent */ printf ("\\~%s%c", (base == 'i' ? "\\" : ""), base); break; case 7: /* Cedilla */ printf ("\\c{%c}", base); break; case 8: /* Small circle beneath */ switch (base) { case 'a': fputs ("\\aa{}", stdout); break; case 'A': fputs ("\\AA{}", stdout); break; default: putchar (' '); } break; case 9: /* Strike through */ switch (base) { case 'o': fputs ("\\o{}", stdout); break; case 'O': fputs ("\\O{}", stdout); break; default: putchar (' '); } break; } } else /* This is not a diacritic character, so handle cases which are really specific to `roff' or TeX. All white space processing is done as the default case of this switch. */ switch (character) { case '"': /* In roff output format, double any quote. */ putchar ('"'); putchar ('"'); break; case '$': case '%': case '&': case '#': case '_': /* In TeX output format, precede these with a backslash. */ putchar ('\\'); putchar (character); break; case '{': case '}': /* In TeX output format, precede these with a backslash and force mathematical mode. */ printf ("$\\%c$", character); break; case '\\': /* In TeX output mode, request production of a backslash. */ fputs ("\\backslash{}", stdout); break; default: /* Any other flagged character produces a single space. */ putchar (' '); } } else putchar (*cursor); } } /* Formatting and actual output - planning routines. */ /*--------------------------------------------------------------------. | From information collected from command line options and input file | | readings, compute and fix some output parameter values. | `--------------------------------------------------------------------*/ static void fix_output_parameters (void) { int file_index; /* index in text input file arrays */ int line_ordinal; /* line ordinal value for reference */ char ordinal_string[12]; /* edited line ordinal for reference */ int reference_width; /* width for the whole reference */ int character; /* character ordinal */ const char *cursor; /* cursor in some constant strings */ /* In auto reference mode, the maximum width of this field is precomputed and subtracted from the overall line width. Add one for the column which separate the file name from the line number. */ if (auto_reference) { reference_max_width = 0; for (file_index = 0; file_index < number_input_files; file_index++) { line_ordinal = file_line_count[file_index] + 1; if (file_index > 0) line_ordinal -= file_line_count[file_index - 1]; sprintf (ordinal_string, "%d", line_ordinal); reference_width = strlen (ordinal_string); if (input_file_name[file_index]) reference_width += strlen (input_file_name[file_index]); if (reference_width > reference_max_width) reference_max_width = reference_width; } reference_max_width++; reference.start = xmalloc ((size_t) reference_max_width + 1); } /* If the reference appears to the left of the output line, reserve some space for it right away, including one gap size. */ if ((auto_reference | input_reference) & !right_reference) line_width -= reference_max_width + gap_size; /* The output lines, minimally, will contain from left to right a left context, a gap, and a keyword followed by the right context with no special intervening gap. Half of the line width is dedicated to the left context and the gap, the other half is dedicated to the keyword and the right context; these values are computed once and for all here. There also are tail and head wrap around fields, used when the keyword is near the beginning or the end of the line, or when some long word cannot fit in, but leave place from wrapped around shorter words. The maximum width of these fields are recomputed separately for each line, on a case by case basis. It is worth noting that it cannot happen that both the tail and head fields are used at once. */ half_line_width = line_width / 2; before_max_width = half_line_width - gap_size; keyafter_max_width = half_line_width; /* If truncation_string is the empty string, make it NULL to speed up tests. In this case, truncation_string_length will never get used, so there is no need to set it. */ if (truncation_string && *truncation_string) truncation_string_length = strlen (truncation_string); else truncation_string = NULL; if (gnu_extensions) { /* When flagging truncation at the left of the keyword, the truncation mark goes at the beginning of the before field, unless there is a head field, in which case the mark goes at the left of the head field. When flagging truncation at the right of the keyword, the mark goes at the end of the keyafter field, unless there is a tail field, in which case the mark goes at the end of the tail field. Only eight combination cases could arise for truncation marks: . None. . One beginning the before field. . One beginning the head field. . One ending the keyafter field. . One ending the tail field. . One beginning the before field, another ending the keyafter field. . One ending the tail field, another beginning the before field. . One ending the keyafter field, another beginning the head field. So, there is at most two truncation marks, which could appear both on the left side of the center of the output line, both on the right side, or one on either side. */ before_max_width -= 2 * truncation_string_length; keyafter_max_width -= 2 * truncation_string_length; } else { /* I never figured out exactly how UNIX' ptx plans the output width of its various fields. If GNU extensions are disabled, do not try computing the field widths correctly; instead, use the following formula, which does not completely imitate UNIX' ptx, but almost. */ keyafter_max_width -= 2 * truncation_string_length + 1; } /* Compute which characters need special output processing. Initialize by flagging any white space character. Some systems do not consider form feed as a space character, but we do. */ for (character = 0; character < CHAR_SET_SIZE; character++) edited_flag[character] = !! isspace (character); edited_flag['\f'] = 1; /* Complete the special character flagging according to selected output format. */ switch (output_format) { case UNKNOWN_FORMAT: /* Should never happen. */ case DUMB_FORMAT: break; case ROFF_FORMAT: /* `Quote' characters should be doubled. */ edited_flag['"'] = 1; break; case TEX_FORMAT: /* Various characters need special processing. */ for (cursor = "$%&#_{}\\"; *cursor; cursor++) edited_flag[to_uchar (*cursor)] = 1; /* Any character with 8th bit set will print to a single space, unless it is diacriticized. */ for (character = 0200; character < CHAR_SET_SIZE; character++) edited_flag[character] = todiac (character) != 0; break; } } /*------------------------------------------------------------------. | Compute the position and length of all the output fields, given a | | pointer to some OCCURS. | `------------------------------------------------------------------*/ static void define_all_fields (OCCURS *occurs) { int tail_max_width; /* allowable width of tail field */ int head_max_width; /* allowable width of head field */ char *cursor; /* running cursor in source text */ char *left_context_start; /* start of left context */ char *right_context_end; /* end of right context */ char *left_field_start; /* conservative start for `head'/`before' */ int file_index; /* index in text input file arrays */ const char *file_name; /* file name for reference */ int line_ordinal; /* line ordinal for reference */ /* Define `keyafter', start of left context and end of right context. `keyafter' starts at the saved position for keyword and extend to the right from the end of the keyword, eating separators or full words, but not beyond maximum allowed width for `keyafter' field or limit for the right context. Suffix spaces will be removed afterwards. */ keyafter.start = occurs->key.start; keyafter.end = keyafter.start + occurs->key.size; left_context_start = keyafter.start + occurs->left; right_context_end = keyafter.start + occurs->right; cursor = keyafter.end; while (cursor < right_context_end && cursor <= keyafter.start + keyafter_max_width) { keyafter.end = cursor; SKIP_SOMETHING (cursor, right_context_end); } if (cursor <= keyafter.start + keyafter_max_width) keyafter.end = cursor; keyafter_truncation = truncation_string && keyafter.end < right_context_end; SKIP_WHITE_BACKWARDS (keyafter.end, keyafter.start); /* When the left context is wide, it might take some time to catch up from the left context boundary to the beginning of the `head' or `before' fields. So, in this case, to speed the catchup, we jump back from the keyword, using some secure distance, possibly falling in the middle of a word. A secure backward jump would be at least half the maximum width of a line, plus the size of the longest word met in the whole input. We conclude this backward jump by a skip forward of at least one word. In this manner, we should not inadvertently accept only part of a word. From the reached point, when it will be time to fix the beginning of `head' or `before' fields, we will skip forward words or delimiters until we get sufficiently near. */ if (-occurs->left > half_line_width + maximum_word_length) { left_field_start = keyafter.start - (half_line_width + maximum_word_length); SKIP_SOMETHING (left_field_start, keyafter.start); } else left_field_start = keyafter.start + occurs->left; /* `before' certainly ends at the keyword, but not including separating spaces. It starts after than the saved value for the left context, by advancing it until it falls inside the maximum allowed width for the before field. There will be no prefix spaces either. `before' only advances by skipping single separators or whole words. */ before.start = left_field_start; before.end = keyafter.start; SKIP_WHITE_BACKWARDS (before.end, before.start); while (before.start + before_max_width < before.end) SKIP_SOMETHING (before.start, before.end); if (truncation_string) { cursor = before.start; SKIP_WHITE_BACKWARDS (cursor, text_buffer.start); before_truncation = cursor > left_context_start; } else before_truncation = 0; SKIP_WHITE (before.start, text_buffer.end); /* The tail could not take more columns than what has been left in the left context field, and a gap is mandatory. It starts after the right context, and does not contain prefixed spaces. It ends at the end of line, the end of buffer or when the tail field is full, whichever comes first. It cannot contain only part of a word, and has no suffixed spaces. */ tail_max_width = before_max_width - (before.end - before.start) - gap_size; if (tail_max_width > 0) { tail.start = keyafter.end; SKIP_WHITE (tail.start, text_buffer.end); tail.end = tail.start; cursor = tail.end; while (cursor < right_context_end && cursor < tail.start + tail_max_width) { tail.end = cursor; SKIP_SOMETHING (cursor, right_context_end); } if (cursor < tail.start + tail_max_width) tail.end = cursor; if (tail.end > tail.start) { keyafter_truncation = 0; tail_truncation = truncation_string && tail.end < right_context_end; } else tail_truncation = 0; SKIP_WHITE_BACKWARDS (tail.end, tail.start); } else { /* No place left for a tail field. */ tail.start = NULL; tail.end = NULL; tail_truncation = 0; } /* `head' could not take more columns than what has been left in the right context field, and a gap is mandatory. It ends before the left context, and does not contain suffixed spaces. Its pointer is advanced until the head field has shrunk to its allowed width. It cannot contain only part of a word, and has no suffixed spaces. */ head_max_width = keyafter_max_width - (keyafter.end - keyafter.start) - gap_size; if (head_max_width > 0) { head.end = before.start; SKIP_WHITE_BACKWARDS (head.end, text_buffer.start); head.start = left_field_start; while (head.start + head_max_width < head.end) SKIP_SOMETHING (head.start, head.end); if (head.end > head.start) { before_truncation = 0; head_truncation = (truncation_string && head.start > left_context_start); } else head_truncation = 0; SKIP_WHITE (head.start, head.end); } else { /* No place left for a head field. */ head.start = NULL; head.end = NULL; head_truncation = 0; } if (auto_reference) { /* Construct the reference text in preallocated space from the file name and the line number. Find out in which file the reference occurred. Standard input yields an empty file name. Insure line numbers are one based, even if they are computed zero based. */ file_index = 0; while (file_line_count[file_index] < occurs->reference) file_index++; file_name = input_file_name[file_index]; if (!file_name) file_name = ""; line_ordinal = occurs->reference + 1; if (file_index > 0) line_ordinal -= file_line_count[file_index - 1]; sprintf (reference.start, "%s:%d", file_name, line_ordinal); reference.end = reference.start + strlen (reference.start); } else if (input_reference) { /* Reference starts at saved position for reference and extends right until some white space is met. */ reference.start = keyafter.start + (DELTA) occurs->reference; reference.end = reference.start; SKIP_NON_WHITE (reference.end, right_context_end); } } /* Formatting and actual output - control routines. */ /*----------------------------------------------------------------------. | Output the current output fields as one line for `troff' or `nroff'. | `----------------------------------------------------------------------*/ static void output_one_roff_line (void) { /* Output the `tail' field. */ printf (".%s \"", macro_name); print_field (tail); if (tail_truncation) fputs (truncation_string, stdout); putchar ('"'); /* Output the `before' field. */ fputs (" \"", stdout); if (before_truncation) fputs (truncation_string, stdout); print_field (before); putchar ('"'); /* Output the `keyafter' field. */ fputs (" \"", stdout); print_field (keyafter); if (keyafter_truncation) fputs (truncation_string, stdout); putchar ('"'); /* Output the `head' field. */ fputs (" \"", stdout); if (head_truncation) fputs (truncation_string, stdout); print_field (head); putchar ('"'); /* Conditionally output the `reference' field. */ if (auto_reference | input_reference) { fputs (" \"", stdout); print_field (reference); putchar ('"'); } putchar ('\n'); } /*---------------------------------------------------------. | Output the current output fields as one line for `TeX'. | `---------------------------------------------------------*/ static void output_one_tex_line (void) { BLOCK key; /* key field, isolated */ BLOCK after; /* after field, isolated */ char *cursor; /* running cursor in source text */ printf ("\\%s ", macro_name); putchar ('{'); print_field (tail); fputs ("}{", stdout); print_field (before); fputs ("}{", stdout); key.start = keyafter.start; after.end = keyafter.end; cursor = keyafter.start; SKIP_SOMETHING (cursor, keyafter.end); key.end = cursor; after.start = cursor; print_field (key); fputs ("}{", stdout); print_field (after); fputs ("}{", stdout); print_field (head); putchar ('}'); if (auto_reference | input_reference) { putchar ('{'); print_field (reference); putchar ('}'); } putchar ('\n'); } /*-------------------------------------------------------------------. | Output the current output fields as one line for a dumb terminal. | `-------------------------------------------------------------------*/ static void output_one_dumb_line (void) { if (!right_reference) { if (auto_reference) { /* Output the `reference' field, in such a way that GNU emacs next-error will handle it. The ending colon is taken from the gap which follows. */ print_field (reference); putchar (':'); print_spaces (reference_max_width + gap_size - (reference.end - reference.start) - 1); } else { /* Output the `reference' field and its following gap. */ print_field (reference); print_spaces (reference_max_width + gap_size - (reference.end - reference.start)); } } if (tail.start < tail.end) { /* Output the `tail' field. */ print_field (tail); if (tail_truncation) fputs (truncation_string, stdout); print_spaces (half_line_width - gap_size - (before.end - before.start) - (before_truncation ? truncation_string_length : 0) - (tail.end - tail.start) - (tail_truncation ? truncation_string_length : 0)); } else print_spaces (half_line_width - gap_size - (before.end - before.start) - (before_truncation ? truncation_string_length : 0)); /* Output the `before' field. */ if (before_truncation) fputs (truncation_string, stdout); print_field (before); print_spaces (gap_size); /* Output the `keyafter' field. */ print_field (keyafter); if (keyafter_truncation) fputs (truncation_string, stdout); if (head.start < head.end) { /* Output the `head' field. */ print_spaces (half_line_width - (keyafter.end - keyafter.start) - (keyafter_truncation ? truncation_string_length : 0) - (head.end - head.start) - (head_truncation ? truncation_string_length : 0)); if (head_truncation) fputs (truncation_string, stdout); print_field (head); } else if ((auto_reference | input_reference) & right_reference) print_spaces (half_line_width - (keyafter.end - keyafter.start) - (keyafter_truncation ? truncation_string_length : 0)); if ((auto_reference | input_reference) & right_reference) { /* Output the `reference' field. */ print_spaces (gap_size); print_field (reference); } putchar ('\n'); } /*------------------------------------------------------------------------. | Scan the whole occurs table and, for each entry, output one line in the | | appropriate format. | `------------------------------------------------------------------------*/ static void generate_all_output (void) { size_t occurs_index; /* index of keyword entry being processed */ OCCURS *occurs_cursor; /* current keyword entry being processed */ /* The following assignments are useful to provide default values in case line contexts or references are not used, in which case these variables would never be computed. */ tail.start = NULL; tail.end = NULL; tail_truncation = 0; head.start = NULL; head.end = NULL; head_truncation = 0; /* Loop over all keyword occurrences. */ occurs_cursor = occurs_table[0]; for (occurs_index = 0; occurs_index < number_of_occurs[0]; occurs_index++) { /* Compute the exact size of every field and whenever truncation flags are present or not. */ define_all_fields (occurs_cursor); /* Produce one output line according to selected format. */ switch (output_format) { case UNKNOWN_FORMAT: /* Should never happen. */ case DUMB_FORMAT: output_one_dumb_line (); break; case ROFF_FORMAT: output_one_roff_line (); break; case TEX_FORMAT: output_one_tex_line (); break; } /* Advance the cursor into the occurs table. */ occurs_cursor++; } } /* Option decoding and main program. */ /*------------------------------------------------------. | Print program identification and options, then exit. | `------------------------------------------------------*/ void usage (int status) { if (status != EXIT_SUCCESS) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("\ Usage: %s [OPTION]... [INPUT]... (without -G)\n\ or: %s -G [OPTION]... [INPUT [OUTPUT]]\n"), program_name, program_name); fputs (_("\ Output a permuted index, including context, of the words in the input files.\n\ \n\ "), stdout); fputs (_("\ Mandatory arguments to long options are mandatory for short options too.\n\ "), stdout); fputs (_("\ -A, --auto-reference output automatically generated references\n\ -G, --traditional behave more like System V `ptx'\n\ -F, --flag-truncation=STRING use STRING for flagging line truncations\n\ "), stdout); fputs (_("\ -M, --macro-name=STRING macro name to use instead of `xx'\n\ -O, --format=roff generate output as roff directives\n\ -R, --right-side-refs put references at right, not counted in -w\n\ -S, --sentence-regexp=REGEXP for end of lines or end of sentences\n\ -T, --format=tex generate output as TeX directives\n\ "), stdout); fputs (_("\ -W, --word-regexp=REGEXP use REGEXP to match each keyword\n\ -b, --break-file=FILE word break characters in this FILE\n\ -f, --ignore-case fold lower case to upper case for sorting\n\ -g, --gap-size=NUMBER gap size in columns between output fields\n\ -i, --ignore-file=FILE read ignore word list from FILE\n\ -o, --only-file=FILE read only word list from this FILE\n\ "), stdout); fputs (_("\ -r, --references first field of each line is a reference\n\ -t, --typeset-mode - not implemented -\n\ -w, --width=NUMBER output width in columns, reference excluded\n\ "), stdout); fputs (HELP_OPTION_DESCRIPTION, stdout); fputs (VERSION_OPTION_DESCRIPTION, stdout); fputs (_("\ \n\ With no FILE or if FILE is -, read Standard Input. `-F /' by default.\n\ "), stdout); emit_bug_reporting_address (); } exit (status); } /*----------------------------------------------------------------------. | Main program. Decode ARGC arguments passed through the ARGV array of | | strings, then launch execution. | `----------------------------------------------------------------------*/ /* Long options equivalences. */ static const struct option const long_options[] = { {"auto-reference", no_argument, NULL, 'A'}, {"break-file", required_argument, NULL, 'b'}, {"flag-truncation", required_argument, NULL, 'F'}, {"ignore-case", no_argument, NULL, 'f'}, {"gap-size", required_argument, NULL, 'g'}, {"ignore-file", required_argument, NULL, 'i'}, {"macro-name", required_argument, NULL, 'M'}, {"only-file", required_argument, NULL, 'o'}, {"references", no_argument, NULL, 'r'}, {"right-side-refs", no_argument, NULL, 'R'}, {"format", required_argument, NULL, 10}, {"sentence-regexp", required_argument, NULL, 'S'}, {"traditional", no_argument, NULL, 'G'}, {"typeset-mode", no_argument, NULL, 't'}, {"width", required_argument, NULL, 'w'}, {"word-regexp", required_argument, NULL, 'W'}, {GETOPT_HELP_OPTION_DECL}, {GETOPT_VERSION_OPTION_DECL}, {NULL, 0, NULL, 0}, }; static char const* const format_args[] = { "roff", "tex", NULL }; static enum Format const format_vals[] = { ROFF_FORMAT, TEX_FORMAT }; int main (int argc, char **argv) { int optchar; /* argument character */ int file_index; /* index in text input file arrays */ /* Decode program options. */ initialize_main (&argc, &argv); set_program_name (argv[0]); setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); atexit (close_stdout); #if HAVE_SETCHRCLASS setchrclass (NULL); #endif while (optchar = getopt_long (argc, argv, "AF:GM:ORS:TW:b:i:fg:o:trw:", long_options, NULL), optchar != EOF) { switch (optchar) { default: usage (EXIT_FAILURE); case 'G': gnu_extensions = false; break; case 'b': break_file = optarg; break; case 'f': ignore_case = true; break; case 'g': { unsigned long int tmp_ulong; if (xstrtoul (optarg, NULL, 0, &tmp_ulong, NULL) != LONGINT_OK || ! (0 < tmp_ulong && tmp_ulong <= INT_MAX)) error (EXIT_FAILURE, 0, _("invalid gap width: %s"), quotearg (optarg)); gap_size = tmp_ulong; break; } case 'i': ignore_file = optarg; break; case 'o': only_file = optarg; break; case 'r': input_reference = true; break; case 't': /* Yet to understand... */ break; case 'w': { unsigned long int tmp_ulong; if (xstrtoul (optarg, NULL, 0, &tmp_ulong, NULL) != LONGINT_OK || ! (0 < tmp_ulong && tmp_ulong <= INT_MAX)) error (EXIT_FAILURE, 0, _("invalid line width: %s"), quotearg (optarg)); line_width = tmp_ulong; break; } case 'A': auto_reference = true; break; case 'F': truncation_string = copy_unescaped_string (optarg); break; case 'M': macro_name = optarg; break; case 'O': output_format = ROFF_FORMAT; break; case 'R': right_reference = true; break; case 'S': context_regex.string = copy_unescaped_string (optarg); break; case 'T': output_format = TEX_FORMAT; break; case 'W': word_regex.string = copy_unescaped_string (optarg); if (!*word_regex.string) word_regex.string = NULL; break; case 10: output_format = XARGMATCH ("--format", optarg, format_args, format_vals); case_GETOPT_HELP_CHAR; case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS); } } /* Process remaining arguments. If GNU extensions are enabled, process all arguments as input parameters. If disabled, accept at most two arguments, the second of which is an output parameter. */ if (optind == argc) { /* No more argument simply means: read standard input. */ input_file_name = xmalloc (sizeof *input_file_name); file_line_count = xmalloc (sizeof *file_line_count); number_input_files = 1; input_file_name[0] = NULL; } else if (gnu_extensions) { number_input_files = argc - optind; input_file_name = xmalloc (number_input_files * sizeof *input_file_name); file_line_count = xmalloc (number_input_files * sizeof *file_line_count); for (file_index = 0; file_index < number_input_files; file_index++) { input_file_name[file_index] = argv[optind]; if (!*argv[optind] || STREQ (argv[optind], "-")) input_file_name[0] = NULL; else input_file_name[0] = argv[optind]; optind++; } } else { /* There is one necessary input file. */ number_input_files = 1; input_file_name = xmalloc (sizeof *input_file_name); file_line_count = xmalloc (sizeof *file_line_count); if (!*argv[optind] || STREQ (argv[optind], "-")) input_file_name[0] = NULL; else input_file_name[0] = argv[optind]; optind++; /* Redirect standard output, only if requested. */ if (optind < argc) { if (! freopen (argv[optind], "w", stdout)) error (EXIT_FAILURE, errno, "%s", argv[optind]); optind++; } /* Diagnose any other argument as an error. */ if (optind < argc) { error (0, 0, _("extra operand %s"), quote (argv[optind])); usage (EXIT_FAILURE); } } /* If the output format has not been explicitly selected, choose dumb terminal format if GNU extensions are enabled, else `roff' format. */ if (output_format == UNKNOWN_FORMAT) output_format = gnu_extensions ? DUMB_FORMAT : ROFF_FORMAT; /* Initialize the main tables. */ initialize_regex (); /* Read `Break character' file, if any. */ if (break_file) digest_break_file (break_file); /* Read `Ignore words' file and `Only words' files, if any. If any of these files is empty, reset the name of the file to NULL, to avoid unnecessary calls to search_table. */ if (ignore_file) { digest_word_file (ignore_file, &ignore_table); if (ignore_table.length == 0) ignore_file = NULL; } if (only_file) { digest_word_file (only_file, &only_table); if (only_table.length == 0) only_file = NULL; } /* Prepare to study all the input files. */ number_of_occurs[0] = 0; total_line_count = 0; maximum_word_length = 0; reference_max_width = 0; for (file_index = 0; file_index < number_input_files; file_index++) { /* Read the file in core, than study it. */ swallow_file_in_memory (input_file_name[file_index], &text_buffer); find_occurs_in_text (); /* Maintain for each file how many lines has been read so far when its end is reached. Incrementing the count first is a simple kludge to handle a possible incomplete line at end of file. */ total_line_count++; file_line_count[file_index] = total_line_count; } /* Do the output process phase. */ sort_found_occurs (); fix_output_parameters (); generate_all_output (); /* All done. */ exit (EXIT_SUCCESS); }