/* factor -- print prime factors of n. Copyright (C) 86, 1995-2005, 2007-2009 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Paul Rubin . Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering. Arbitrary-precision code adapted by James Youngman from Torbjörn Granlund's factorize.c, from GNU MP version 4.2.2. */ #include #include #include #include #include #if HAVE_GMP # include #endif #include #include "system.h" #include "error.h" #include "quote.h" #include "readtokens.h" #include "xstrtol.h" /* The official name of this program (e.g., no `g' prefix). */ #define PROGRAM_NAME "factor" #define AUTHORS proper_name ("Paul Rubin") /* Token delimiters when reading from a file. */ #define DELIM "\n\t " static bool verbose = false; #if HAVE_GMP static mpz_t *factor = NULL; static size_t nfactors_found = 0; static size_t nfactors_allocated = 0; static void debug (char const *fmt, ...) { if (verbose) { va_list ap; va_start (ap, fmt); vfprintf (stderr, fmt, ap); va_end (ap); } } static void emit_factor (mpz_t n) { if (nfactors_found == nfactors_allocated) factor = X2NREALLOC (factor, &nfactors_allocated); mpz_init (factor[nfactors_found]); mpz_set (factor[nfactors_found], n); ++nfactors_found; } static void emit_ul_factor (unsigned long int i) { mpz_t t; mpz_init (t); mpz_set_ui (t, i); emit_factor (t); mpz_clear (t); } static void factor_using_division (mpz_t t, unsigned int limit) { mpz_t q, r; unsigned long int f; int ai; static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6}; unsigned int const *addv = add; unsigned int failures; debug ("[trial division (%u)] ", limit); mpz_init (q); mpz_init (r); f = mpz_scan1 (t, 0); mpz_div_2exp (t, t, f); while (f) { emit_ul_factor (2); --f; } for (;;) { mpz_tdiv_qr_ui (q, r, t, 3); if (mpz_cmp_ui (r, 0) != 0) break; mpz_set (t, q); emit_ul_factor (3); } for (;;) { mpz_tdiv_qr_ui (q, r, t, 5); if (mpz_cmp_ui (r, 0) != 0) break; mpz_set (t, q); emit_ul_factor (5); } failures = 0; f = 7; ai = 0; while (mpz_cmp_ui (t, 1) != 0) { mpz_tdiv_qr_ui (q, r, t, f); if (mpz_cmp_ui (r, 0) != 0) { f += addv[ai]; if (mpz_cmp_ui (q, f) < 0) break; ai = (ai + 1) & 7; failures++; if (failures > limit) break; } else { mpz_swap (t, q); emit_ul_factor (f); failures = 0; } } mpz_clear (q); mpz_clear (r); } static void factor_using_pollard_rho (mpz_t n, int a_int) { mpz_t x, x1, y, P; mpz_t a; mpz_t g; mpz_t t1, t2; int k, l, c, i; debug ("[pollard-rho (%d)] ", a_int); mpz_init (g); mpz_init (t1); mpz_init (t2); mpz_init_set_si (a, a_int); mpz_init_set_si (y, 2); mpz_init_set_si (x, 2); mpz_init_set_si (x1, 2); k = 1; l = 1; mpz_init_set_ui (P, 1); c = 0; while (mpz_cmp_ui (n, 1) != 0) { S2: mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n); mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n); c++; if (c == 20) { c = 0; mpz_gcd (g, P, n); if (mpz_cmp_ui (g, 1) != 0) goto S4; mpz_set (y, x); } k--; if (k > 0) goto S2; mpz_gcd (g, P, n); if (mpz_cmp_ui (g, 1) != 0) goto S4; mpz_set (x1, x); k = l; l = 2 * l; for (i = 0; i < k; i++) { mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n); } mpz_set (y, x); c = 0; goto S2; S4: do { mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n); mpz_sub (t1, x1, y); mpz_gcd (g, t1, n); } while (mpz_cmp_ui (g, 1) == 0); mpz_div (n, n, g); /* divide by g, before g is overwritten */ if (!mpz_probab_prime_p (g, 3)) { do { mp_limb_t a_limb; mpn_random (&a_limb, (mp_size_t) 1); a_int = (int) a_limb; } while (a_int == -2 || a_int == 0); debug ("[composite factor--restarting pollard-rho] "); factor_using_pollard_rho (g, a_int); } else { emit_factor (g); } mpz_mod (x, x, n); mpz_mod (x1, x1, n); mpz_mod (y, y, n); if (mpz_probab_prime_p (n, 3)) { emit_factor (n); break; } } mpz_clear (g); mpz_clear (P); mpz_clear (t2); mpz_clear (t1); mpz_clear (a); mpz_clear (x1); mpz_clear (x); mpz_clear (y); } #else static void debug (char const *fmt ATTRIBUTE_UNUSED, ...) { } #endif /* The maximum number of factors, including -1, for negative numbers. */ #define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT) /* The trial divisor increment wheel. Use it to skip over divisors that are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to WHEEL_END is reused periodically, while the "lead in" is used to test for those primes and to jump onto the wheel. For more information, see http://www.utm.edu/research/primes/glossary/WheelFactorization.html */ #include "wheel-size.h" /* For the definition of WHEEL_SIZE. */ static const unsigned char wheel_tab[] = { #include "wheel.h" }; #define WHEEL_START (wheel_tab + WHEEL_SIZE) #define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab)) /* FIXME: comment */ static size_t factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors) { uintmax_t n = n0, d, q; size_t n_factors = 0; unsigned char const *w = wheel_tab; if (n <= 1) return n_factors; /* The exit condition in the following loop is correct because any time it is tested one of these 3 conditions holds: (1) d divides n (2) n is prime (3) n is composite but has no factors less than d. If (1) or (2) obviously the right thing happens. If (3), then since n is composite it is >= d^2. */ d = 2; do { q = n / d; while (n == q * d) { assert (n_factors < max_n_factors); factors[n_factors++] = d; n = q; q = n / d; } d += *(w++); if (w == WHEEL_END) w = WHEEL_START; } while (d <= q); if (n != 1 || n0 == 1) { assert (n_factors < max_n_factors); factors[n_factors++] = n; } return n_factors; } /* Single-precision factoring */ static void print_factors_single (uintmax_t n) { uintmax_t factors[MAX_N_FACTORS]; size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors); size_t i; char buf[INT_BUFSIZE_BOUND (uintmax_t)]; printf ("%s:", umaxtostr (n, buf)); for (i = 0; i < n_factors; i++) printf (" %s", umaxtostr (factors[i], buf)); putchar ('\n'); } #if HAVE_GMP static int mpcompare (const void *av, const void *bv) { mpz_t *const *a = av; mpz_t *const *b = bv; return mpz_cmp (**a, **b); } static void sort_and_print_factors (void) { mpz_t **faclist; size_t i; faclist = xcalloc (nfactors_found, sizeof *faclist); for (i = 0; i < nfactors_found; ++i) { faclist[i] = &factor[i]; } qsort (faclist, nfactors_found, sizeof *faclist, mpcompare); for (i = 0; i < nfactors_found; ++i) { fputc (' ', stdout); mpz_out_str (stdout, 10, *faclist[i]); } putchar ('\n'); free (faclist); } static void free_factors (void) { size_t i; for (i = 0; i < nfactors_found; ++i) { mpz_clear (factor[i]); } /* Don't actually free factor[] because in the case where we are reading numbers from stdin, we may be about to use it again. */ nfactors_found = 0; } /* Arbitrary-precision factoring */ static void print_factors_multi (mpz_t t) { mpz_out_str (stdout, 10, t); putchar (':'); if (mpz_sgn (t) != 0) { /* Set the trial division limit according to the size of t. */ size_t n_bits = mpz_sizeinbase (t, 2); unsigned int division_limit = MIN (n_bits, 1000); division_limit *= division_limit; factor_using_division (t, division_limit); if (mpz_cmp_ui (t, 1) != 0) { debug ("[is number prime?] "); if (mpz_probab_prime_p (t, 3)) emit_factor (t); else factor_using_pollard_rho (t, 1); } } mpz_clear (t); sort_and_print_factors (); free_factors (); } #endif /* Emit the factors of the indicated number. If we have the option of using either algorithm, we select on the basis of the length of the number. For longer numbers, we prefer the MP algorithm even if the native algorithm has enough digits, because the algorithm is better. The turnover point depends on the value. */ static bool print_factors (char const *s) { uintmax_t n; strtol_error err = xstrtoumax (s, NULL, 10, &n, ""); #if HAVE_GMP enum { GMP_TURNOVER_POINT = 100000 }; if (err == LONGINT_OVERFLOW || (err == LONGINT_OK && GMP_TURNOVER_POINT <= n)) { mpz_t t; mpz_init (t); if (gmp_sscanf (s, "%Zd", t) == 1) { debug ("[%s]", _("using arbitrary-precision arithmetic")); print_factors_multi (t); return true; } err = LONGINT_INVALID; } #endif switch (err) { case LONGINT_OK: debug ("[%s]", _("using single-precision arithmetic")); print_factors_single (n); return true; case LONGINT_OVERFLOW: error (0, 0, _("%s is too large"), quote (s)); return false; default: error (0, 0, _("%s is not a valid positive integer"), quote (s)); return false; } } enum { VERBOSE_OPTION = CHAR_MAX + 1 }; static struct option const long_options[] = { {"verbose", no_argument, NULL, VERBOSE_OPTION}, {GETOPT_HELP_OPTION_DECL}, {GETOPT_VERSION_OPTION_DECL}, {NULL, 0, NULL, 0} }; void usage (int status) { if (status != EXIT_SUCCESS) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("\ Usage: %s [NUMBER]...\n\ or: %s OPTION\n\ "), program_name, program_name); fputs (_("\ Print the prime factors of each specified integer NUMBER. If none\n\ are specified on the command line, read them from standard input.\n\ \n\ "), stdout); fputs (HELP_OPTION_DESCRIPTION, stdout); fputs (VERSION_OPTION_DESCRIPTION, stdout); emit_ancillary_info (); } exit (status); } static bool do_stdin (void) { bool ok = true; token_buffer tokenbuffer; init_tokenbuffer (&tokenbuffer); for (;;) { size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1, &tokenbuffer); if (token_length == (size_t) -1) break; ok &= print_factors (tokenbuffer.buffer); } free (tokenbuffer.buffer); return ok; } int main (int argc, char **argv) { bool ok; int c; initialize_main (&argc, &argv); set_program_name (argv[0]); setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); atexit (close_stdout); while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1) { switch (c) { case VERBOSE_OPTION: verbose = true; break; case_GETOPT_HELP_CHAR; case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS); default: usage (EXIT_FAILURE); } } if (argc <= optind) ok = do_stdin (); else { int i; ok = true; for (i = optind; i < argc; i++) if (! print_factors (argv[i])) ok = false; } #if HAVE_GMP free (factor); #endif exit (ok ? EXIT_SUCCESS : EXIT_FAILURE); }