/* Stack overflow handling. Copyright (C) 2002 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Written by Paul Eggert. */ /* NOTES: A program that uses alloca, dynamic arrays, or large local variables may extend the stack by more than a page at a time. If so, when the stack overflows the operating system may not detect the overflow until the program uses the array, and this module may incorrectly report a program error instead of a stack overflow. To avoid this problem, allocate only small objects on the stack; a program should be OK if it limits single allocations to a page or less. Allocate larger arrays in static storage, or on the heap (e.g., with malloc). Yes, this is a pain, but we don't know of any better solution that is portable. No attempt has been made to deal with multithreaded applications. If ! HAVE_XSI_STACK_OVERFLOW_HEURISTIC, the current implementation assumes that, if the RLIMIT_STACK limit changes during execution, then c_stack_action is invoked immediately afterwards. */ #if HAVE_CONFIG_H # include #endif #ifndef __attribute__ # if __GNUC__ < 3 || __STRICT_ANSI__ # define __attribute__(x) # endif #endif #include "gettext.h" #define _(msgid) gettext (msgid) #include #ifndef ENOTSUP # define ENOTSUP EINVAL #endif #ifndef EOVERFLOW # define EOVERFLOW EINVAL #endif #include #if ! HAVE_STACK_T && ! defined stack_t typedef struct sigaltstack stack_t; #endif #include #include #if HAVE_SYS_RESOURCE_H /* Include sys/time.h here, because... SunOS-4.1.x fails to include . This gives "incomplete type" errors for ru_utime and tu_stime. */ # if HAVE_SYS_TIME_H # include # endif # include #endif #if HAVE_UCONTEXT_H # include #endif #if HAVE_UNISTD_H # include #endif #ifndef STDERR_FILENO # define STDERR_FILENO 2 #endif #if DEBUG # include #endif #include "c-stack.h" #include "exitfail.h" extern char *program_name; /* The user-specified action to take when a SEGV-related program error or stack overflow occurs. */ static void (* volatile segv_action) (int); /* Translated messages for program errors and stack overflow. Do not translate them in the signal handler, since gettext is not async-signal-safe. */ static char const * volatile program_error_message; static char const * volatile stack_overflow_message; /* Output an error message, then exit with status EXIT_FAILURE if it appears to have been a stack overflow, or with a core dump otherwise. This function is async-signal-safe. */ static void die (int) __attribute__ ((noreturn)); static void die (int signo) { char const *message = signo ? program_error_message : stack_overflow_message; segv_action (signo); write (STDERR_FILENO, program_name, strlen (program_name)); write (STDERR_FILENO, ": ", 2); write (STDERR_FILENO, message, strlen (message)); write (STDERR_FILENO, "\n", 1); if (! signo) _exit (exit_failure); kill (getpid (), signo); abort (); } #if HAVE_SIGALTSTACK && HAVE_DECL_SIGALTSTACK /* Direction of the C runtime stack. This function is async-signal-safe. */ # if STACK_DIRECTION # define find_stack_direction(ptr) STACK_DIRECTION # else static int find_stack_direction (char const *addr) { char dummy; return ! addr ? find_stack_direction (&dummy) : addr < &dummy ? 1 : -1; } # endif # if HAVE_XSI_STACK_OVERFLOW_HEURISTIC # define get_stack_location(argv) 0 # else # if defined RLIMIT_STACK && defined _SC_PAGESIZE /* Return the minimum machine address deducible from ARGV. This includes the addresses of all the strings that ARGV points at, as well as the address of ARGV itself. */ static char const * min_address_from_argv (char * const *argv) { char const *min = (char const *) argv; char const *p; while ((p = *argv++)) if (p < min) min = p; return min; } /* Return the maximum machine address deducible from ARGV. */ static char const * max_address_from_argv (char * const *argv) { char const *max = *argv; char const *max1; char const *p; while ((p = *argv++)) if (max < p) max = p; max1 = (char const *) (argv + 1); return max && max1 < max ? max + strlen (max) + 1 : max1; } # endif /* The base and size of the stack, determined at startup. */ static char const * volatile stack_base; static size_t volatile stack_size; /* Store the base and size of the stack into the static variables STACK_BASE and STACK_SIZE. The base is the numerically lowest address in the stack. Return -1 (setting errno) if this cannot be done. */ static int get_stack_location (char * const *argv) { # if ! (defined RLIMIT_STACK && defined _SC_PAGESIZE) errno = ENOTSUP; return -1; # else struct rlimit rlimit; int r = getrlimit (RLIMIT_STACK, &rlimit); if (r == 0) { char const *base; size_t size = rlimit.rlim_cur; extern char **environ; size_t page_size = sysconf (_SC_PAGESIZE); int stack_direction = find_stack_direction (0); # if HAVE_GETCONTEXT && HAVE_DECL_GETCONTEXT ucontext_t context; if (getcontext (&context) == 0) { base = context.uc_stack.ss_sp; if (stack_direction < 0) base -= size - context.uc_stack.ss_size; } else # endif { if (stack_direction < 0) { char const *a = max_address_from_argv (argv); char const *b = max_address_from_argv (environ); base = (a < b ? b : a) - size; base += - (size_t) base % page_size; } else { char const *a = min_address_from_argv (argv); char const *b = min_address_from_argv (environ); base = a < b ? a : b; base -= (size_t) base % page_size; } } if (size != rlimit.rlim_cur || rlimit.rlim_cur < 0 || base + size < base # ifdef RLIM_SAVED_CUR || rlimit.rlim_cur == RLIM_SAVED_CUR # endif # ifdef RLIM_SAVED_MAX || rlimit.rlim_cur == RLIM_SAVED_MAX # endif # ifdef RLIM_INFINITY || rlimit.rlim_cur == RLIM_INFINITY # endif ) { errno = EOVERFLOW; return -1; } stack_base = base; stack_size = size; # if DEBUG fprintf (stderr, "get_stack_location base=%p size=%lx\n", base, (unsigned long) size); # endif } return r; # endif } # endif /* Storage for the alternate signal stack. */ static union { char buffer[SIGSTKSZ]; /* These other members are for proper alignment. There's no standard way to guarantee stack alignment, but this seems enough in practice. */ long double ld; long l; void *p; } alternate_signal_stack; # if defined SA_ONSTACK && defined SA_SIGINFO && defined _SC_PAGESIZE /* Handle a segmentation violation and exit. This function is async-signal-safe. */ static void segv_handler (int, siginfo_t *, void *) __attribute__((noreturn)); static void segv_handler (int signo, siginfo_t *info, void *context __attribute__ ((unused))) { /* Clear SIGNO if it seems to have been a stack overflow. */ if (0 < info->si_code) { /* If the faulting address is within the stack, or within one page of the stack end, assume that it is a stack overflow. */ # if HAVE_XSI_STACK_OVERFLOW_HEURISTIC ucontext_t const *user_context = context; char const *stack_base = user_context->uc_stack.ss_sp; size_t stack_size = user_context->uc_stack.ss_size; # endif char const *faulting_address = info->si_addr; size_t s = faulting_address - stack_base; size_t page_size = sysconf (_SC_PAGESIZE); if (find_stack_direction (0) < 0) s += page_size; if (s < stack_size + page_size) signo = 0; # if DEBUG { char buf[1024]; sprintf (buf, "segv_handler fault=%p base=%p size=%lx page=%lx signo=%d\n", faulting_address, stack_base, (unsigned long) stack_size, (unsigned long) page_size, signo); write (STDERR_FILENO, buf, strlen (buf)); } # endif } die (signo); } # endif static void null_action (int signo __attribute__ ((unused))) { } /* Assuming ARGV is the argument vector of `main', set up ACTION so that it is invoked on C stack overflow. Return -1 (setting errno) if this cannot be done. When ACTION is called, it is passed an argument equal to SIGSEGV for a segmentation violation that does not appear related to stack overflow, and is passed zero otherwise. A null ACTION acts like an action that does nothing. ACTION must be async-signal-safe. ACTION together with its callees must not require more than SIGSTKSZ bytes of stack space. */ int c_stack_action (char * const *argv __attribute__ ((unused)), void (*action) (int)) { int r = get_stack_location (argv); if (r != 0) return r; { stack_t st; st.ss_flags = 0; st.ss_sp = alternate_signal_stack.buffer; st.ss_size = sizeof alternate_signal_stack.buffer; r = sigaltstack (&st, 0); if (r != 0) return r; } segv_action = action ? action : null_action; program_error_message = _("program error"); stack_overflow_message = _("stack overflow"); { # if ! (defined SA_ONSTACK && defined SA_SIGINFO && defined _SC_PAGESIZE) return signal (SIGSEGV, die) == SIG_ERR ? -1 : 0; # else struct sigaction act; sigemptyset (&act.sa_mask); /* POSIX 1003.1-2001 says SA_RESETHAND implies SA_NODEFER, but this is not true on Solaris 8 at least. It doesn't hurt to use SA_NODEFER here, so leave it in. */ act.sa_flags = SA_NODEFER | SA_ONSTACK | SA_RESETHAND | SA_SIGINFO; act.sa_sigaction = segv_handler; return sigaction (SIGSEGV, &act, 0); # endif } } #else /* ! (HAVE_SIGALTSTACK && HAVE_DECL_SIGALTSTACK) */ int c_stack_action (char * const *argv __attribute__ ((unused)), void (*action) (int) __attribute__ ((unused))) { errno = ENOTSUP; return -1; } #endif #if DEBUG int volatile exit_failure; static long recurse (char *p) { char array[500]; array[0] = 1; return *p + recurse (array); } char *program_name; int main (int argc __attribute__ ((unused)), char **argv) { program_name = argv[0]; fprintf (stderr, "The last line of output should be \"stack overflow\".\n"); if (c_stack_action (argv, 0) == 0) return recurse ("\1"); perror ("c_stack_action"); return 1; } #endif /* DEBUG */ /* Local Variables: compile-command: "gcc -DDEBUG -DHAVE_CONFIG_H -I.. -g -O -Wall -W c-stack.c" End: */