summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJim Meyering <jim@meyering.net>1994-10-20 16:10:00 +0000
committerJim Meyering <jim@meyering.net>1994-10-20 16:10:00 +0000
commitadeff820d3380fd5d80599a3962cd13a9269d1d1 (patch)
tree4761a27ca0719837221ca6908b80219165721ecb
parent3bdb536a555457e1bf085a0cbda877bc8e162531 (diff)
downloadcoreutils-adeff820d3380fd5d80599a3962cd13a9269d1d1.tar.xz
Initial revision
-rw-r--r--lib/obstack.c485
-rw-r--r--lib/obstack.h513
2 files changed, 998 insertions, 0 deletions
diff --git a/lib/obstack.c b/lib/obstack.c
new file mode 100644
index 000000000..a8a450070
--- /dev/null
+++ b/lib/obstack.c
@@ -0,0 +1,485 @@
+/* obstack.c - subroutines used implicitly by object stack macros
+ Copyright (C) 1988, 89, 90, 91, 92, 93, 94 Free Software Foundation, Inc.
+
+This program is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "obstack.h"
+
+/* This is just to get __GNU_LIBRARY__ defined. */
+#include <stdio.h>
+
+/* Comment out all this code if we are using the GNU C Library, and are not
+ actually compiling the library itself. This code is part of the GNU C
+ Library, but also included in many other GNU distributions. Compiling
+ and linking in this code is a waste when using the GNU C library
+ (especially if it is a shared library). Rather than having every GNU
+ program understand `configure --with-gnu-libc' and omit the object files,
+ it is simpler to just do this in the source for each such file. */
+
+#if defined (_LIBC) || !defined (__GNU_LIBRARY__)
+
+
+#ifdef __STDC__
+#define POINTER void *
+#else
+#define POINTER char *
+#endif
+
+/* Determine default alignment. */
+struct fooalign {char x; double d;};
+#define DEFAULT_ALIGNMENT \
+ ((PTR_INT_TYPE) ((char *)&((struct fooalign *) 0)->d - (char *)0))
+/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT.
+ But in fact it might be less smart and round addresses to as much as
+ DEFAULT_ROUNDING. So we prepare for it to do that. */
+union fooround {long x; double d;};
+#define DEFAULT_ROUNDING (sizeof (union fooround))
+
+/* When we copy a long block of data, this is the unit to do it with.
+ On some machines, copying successive ints does not work;
+ in such a case, redefine COPYING_UNIT to `long' (if that works)
+ or `char' as a last resort. */
+#ifndef COPYING_UNIT
+#define COPYING_UNIT int
+#endif
+
+/* The non-GNU-C macros copy the obstack into this global variable
+ to avoid multiple evaluation. */
+
+struct obstack *_obstack;
+
+/* Define a macro that either calls functions with the traditional malloc/free
+ calling interface, or calls functions with the mmalloc/mfree interface
+ (that adds an extra first argument), based on the state of use_extra_arg.
+ For free, do not use ?:, since some compilers, like the MIPS compilers,
+ do not allow (expr) ? void : void. */
+
+#define CALL_CHUNKFUN(h, size) \
+ (((h) -> use_extra_arg) \
+ ? (*(h)->chunkfun) ((h)->extra_arg, (size)) \
+ : (*(h)->chunkfun) ((size)))
+
+#define CALL_FREEFUN(h, old_chunk) \
+ do { \
+ if ((h) -> use_extra_arg) \
+ (*(h)->freefun) ((h)->extra_arg, (old_chunk)); \
+ else \
+ (*(h)->freefun) ((old_chunk)); \
+ } while (0)
+
+
+/* Initialize an obstack H for use. Specify chunk size SIZE (0 means default).
+ Objects start on multiples of ALIGNMENT (0 means use default).
+ CHUNKFUN is the function to use to allocate chunks,
+ and FREEFUN the function to free them.
+
+ Return nonzero if successful, zero if out of memory.
+ To recover from an out of memory error,
+ free up some memory, then call this again. */
+
+int
+_obstack_begin (h, size, alignment, chunkfun, freefun)
+ struct obstack *h;
+ int size;
+ int alignment;
+ POINTER (*chunkfun) ();
+ void (*freefun) ();
+{
+ register struct _obstack_chunk* chunk; /* points to new chunk */
+
+ if (alignment == 0)
+ alignment = DEFAULT_ALIGNMENT;
+ if (size == 0)
+ /* Default size is what GNU malloc can fit in a 4096-byte block. */
+ {
+ /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
+ Use the values for range checking, because if range checking is off,
+ the extra bytes won't be missed terribly, but if range checking is on
+ and we used a larger request, a whole extra 4096 bytes would be
+ allocated.
+
+ These number are irrelevant to the new GNU malloc. I suspect it is
+ less sensitive to the size of the request. */
+ int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+ + 4 + DEFAULT_ROUNDING - 1)
+ & ~(DEFAULT_ROUNDING - 1));
+ size = 4096 - extra;
+ }
+
+ h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun;
+ h->freefun = freefun;
+ h->chunk_size = size;
+ h->alignment_mask = alignment - 1;
+ h->use_extra_arg = 0;
+
+ chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size);
+ if (!chunk)
+ {
+ h->alloc_failed = 1;
+ return 0;
+ }
+ h->alloc_failed = 0;
+ h->next_free = h->object_base = chunk->contents;
+ h->chunk_limit = chunk->limit
+ = (char *) chunk + h->chunk_size;
+ chunk->prev = 0;
+ /* The initial chunk now contains no empty object. */
+ h->maybe_empty_object = 0;
+ return 1;
+}
+
+int
+_obstack_begin_1 (h, size, alignment, chunkfun, freefun, arg)
+ struct obstack *h;
+ int size;
+ int alignment;
+ POINTER (*chunkfun) ();
+ void (*freefun) ();
+ POINTER arg;
+{
+ register struct _obstack_chunk* chunk; /* points to new chunk */
+
+ if (alignment == 0)
+ alignment = DEFAULT_ALIGNMENT;
+ if (size == 0)
+ /* Default size is what GNU malloc can fit in a 4096-byte block. */
+ {
+ /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
+ Use the values for range checking, because if range checking is off,
+ the extra bytes won't be missed terribly, but if range checking is on
+ and we used a larger request, a whole extra 4096 bytes would be
+ allocated.
+
+ These number are irrelevant to the new GNU malloc. I suspect it is
+ less sensitive to the size of the request. */
+ int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+ + 4 + DEFAULT_ROUNDING - 1)
+ & ~(DEFAULT_ROUNDING - 1));
+ size = 4096 - extra;
+ }
+
+ h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun;
+ h->freefun = freefun;
+ h->chunk_size = size;
+ h->alignment_mask = alignment - 1;
+ h->extra_arg = arg;
+ h->use_extra_arg = 1;
+
+ chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size);
+ if (!chunk)
+ {
+ h->alloc_failed = 1;
+ return 0;
+ }
+ h->alloc_failed = 0;
+ h->next_free = h->object_base = chunk->contents;
+ h->chunk_limit = chunk->limit
+ = (char *) chunk + h->chunk_size;
+ chunk->prev = 0;
+ /* The initial chunk now contains no empty object. */
+ h->maybe_empty_object = 0;
+ return 1;
+}
+
+/* Allocate a new current chunk for the obstack *H
+ on the assumption that LENGTH bytes need to be added
+ to the current object, or a new object of length LENGTH allocated.
+ Copies any partial object from the end of the old chunk
+ to the beginning of the new one. */
+
+void
+_obstack_newchunk (h, length)
+ struct obstack *h;
+ int length;
+{
+ register struct _obstack_chunk* old_chunk = h->chunk;
+ register struct _obstack_chunk* new_chunk;
+ register long new_size;
+ register int obj_size = h->next_free - h->object_base;
+ register int i;
+ int already;
+
+ /* Compute size for new chunk. */
+ new_size = (obj_size + length) + (obj_size >> 3) + 100;
+ if (new_size < h->chunk_size)
+ new_size = h->chunk_size;
+
+ /* Allocate and initialize the new chunk. */
+ new_chunk = CALL_CHUNKFUN (h, new_size);
+ if (!new_chunk)
+ {
+ h->alloc_failed = 1;
+ return;
+ }
+ h->alloc_failed = 0;
+ h->chunk = new_chunk;
+ new_chunk->prev = old_chunk;
+ new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size;
+
+ /* Move the existing object to the new chunk.
+ Word at a time is fast and is safe if the object
+ is sufficiently aligned. */
+ if (h->alignment_mask + 1 >= DEFAULT_ALIGNMENT)
+ {
+ for (i = obj_size / sizeof (COPYING_UNIT) - 1;
+ i >= 0; i--)
+ ((COPYING_UNIT *)new_chunk->contents)[i]
+ = ((COPYING_UNIT *)h->object_base)[i];
+ /* We used to copy the odd few remaining bytes as one extra COPYING_UNIT,
+ but that can cross a page boundary on a machine
+ which does not do strict alignment for COPYING_UNITS. */
+ already = obj_size / sizeof (COPYING_UNIT) * sizeof (COPYING_UNIT);
+ }
+ else
+ already = 0;
+ /* Copy remaining bytes one by one. */
+ for (i = already; i < obj_size; i++)
+ new_chunk->contents[i] = h->object_base[i];
+
+ /* If the object just copied was the only data in OLD_CHUNK,
+ free that chunk and remove it from the chain.
+ But not if that chunk might contain an empty object. */
+ if (h->object_base == old_chunk->contents && ! h->maybe_empty_object)
+ {
+ new_chunk->prev = old_chunk->prev;
+ CALL_FREEFUN (h, old_chunk);
+ }
+
+ h->object_base = new_chunk->contents;
+ h->next_free = h->object_base + obj_size;
+ /* The new chunk certainly contains no empty object yet. */
+ h->maybe_empty_object = 0;
+}
+
+/* Return nonzero if object OBJ has been allocated from obstack H.
+ This is here for debugging.
+ If you use it in a program, you are probably losing. */
+
+#ifdef __STDC__
+/* Suppress -Wmissing-prototypes warning. We don't want to declare this in
+ obstack.h because it is just for debugging. */
+int _obstack_allocated_p (struct obstack *h, POINTER obj);
+#endif
+
+int
+_obstack_allocated_p (h, obj)
+ struct obstack *h;
+ POINTER obj;
+{
+ register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */
+ register struct _obstack_chunk* plp; /* point to previous chunk if any */
+
+ lp = (h)->chunk;
+ /* We use >= rather than > since the object cannot be exactly at
+ the beginning of the chunk but might be an empty object exactly
+ at the end of an adjacent chunk. */
+ while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj))
+ {
+ plp = lp->prev;
+ lp = plp;
+ }
+ return lp != 0;
+}
+
+/* Free objects in obstack H, including OBJ and everything allocate
+ more recently than OBJ. If OBJ is zero, free everything in H. */
+
+#undef obstack_free
+
+/* This function has two names with identical definitions.
+ This is the first one, called from non-ANSI code. */
+
+void
+_obstack_free (h, obj)
+ struct obstack *h;
+ POINTER obj;
+{
+ register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */
+ register struct _obstack_chunk* plp; /* point to previous chunk if any */
+
+ lp = h->chunk;
+ /* We use >= because there cannot be an object at the beginning of a chunk.
+ But there can be an empty object at that address
+ at the end of another chunk. */
+ while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj))
+ {
+ plp = lp->prev;
+ CALL_FREEFUN (h, lp);
+ lp = plp;
+ /* If we switch chunks, we can't tell whether the new current
+ chunk contains an empty object, so assume that it may. */
+ h->maybe_empty_object = 1;
+ }
+ if (lp)
+ {
+ h->object_base = h->next_free = (char *)(obj);
+ h->chunk_limit = lp->limit;
+ h->chunk = lp;
+ }
+ else if (obj != 0)
+ /* obj is not in any of the chunks! */
+ abort ();
+}
+
+/* This function is used from ANSI code. */
+
+void
+obstack_free (h, obj)
+ struct obstack *h;
+ POINTER obj;
+{
+ register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */
+ register struct _obstack_chunk* plp; /* point to previous chunk if any */
+
+ lp = h->chunk;
+ /* We use >= because there cannot be an object at the beginning of a chunk.
+ But there can be an empty object at that address
+ at the end of another chunk. */
+ while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj))
+ {
+ plp = lp->prev;
+ CALL_FREEFUN (h, lp);
+ lp = plp;
+ /* If we switch chunks, we can't tell whether the new current
+ chunk contains an empty object, so assume that it may. */
+ h->maybe_empty_object = 1;
+ }
+ if (lp)
+ {
+ h->object_base = h->next_free = (char *)(obj);
+ h->chunk_limit = lp->limit;
+ h->chunk = lp;
+ }
+ else if (obj != 0)
+ /* obj is not in any of the chunks! */
+ abort ();
+}
+
+#if 0
+/* These are now turned off because the applications do not use it
+ and it uses bcopy via obstack_grow, which causes trouble on sysV. */
+
+/* Now define the functional versions of the obstack macros.
+ Define them to simply use the corresponding macros to do the job. */
+
+#ifdef __STDC__
+/* These function definitions do not work with non-ANSI preprocessors;
+ they won't pass through the macro names in parentheses. */
+
+/* The function names appear in parentheses in order to prevent
+ the macro-definitions of the names from being expanded there. */
+
+POINTER (obstack_base) (obstack)
+ struct obstack *obstack;
+{
+ return obstack_base (obstack);
+}
+
+POINTER (obstack_next_free) (obstack)
+ struct obstack *obstack;
+{
+ return obstack_next_free (obstack);
+}
+
+int (obstack_object_size) (obstack)
+ struct obstack *obstack;
+{
+ return obstack_object_size (obstack);
+}
+
+int (obstack_room) (obstack)
+ struct obstack *obstack;
+{
+ return obstack_room (obstack);
+}
+
+void (obstack_grow) (obstack, pointer, length)
+ struct obstack *obstack;
+ POINTER pointer;
+ int length;
+{
+ obstack_grow (obstack, pointer, length);
+}
+
+void (obstack_grow0) (obstack, pointer, length)
+ struct obstack *obstack;
+ POINTER pointer;
+ int length;
+{
+ obstack_grow0 (obstack, pointer, length);
+}
+
+void (obstack_1grow) (obstack, character)
+ struct obstack *obstack;
+ int character;
+{
+ obstack_1grow (obstack, character);
+}
+
+void (obstack_blank) (obstack, length)
+ struct obstack *obstack;
+ int length;
+{
+ obstack_blank (obstack, length);
+}
+
+void (obstack_1grow_fast) (obstack, character)
+ struct obstack *obstack;
+ int character;
+{
+ obstack_1grow_fast (obstack, character);
+}
+
+void (obstack_blank_fast) (obstack, length)
+ struct obstack *obstack;
+ int length;
+{
+ obstack_blank_fast (obstack, length);
+}
+
+POINTER (obstack_finish) (obstack)
+ struct obstack *obstack;
+{
+ return obstack_finish (obstack);
+}
+
+POINTER (obstack_alloc) (obstack, length)
+ struct obstack *obstack;
+ int length;
+{
+ return obstack_alloc (obstack, length);
+}
+
+POINTER (obstack_copy) (obstack, pointer, length)
+ struct obstack *obstack;
+ POINTER pointer;
+ int length;
+{
+ return obstack_copy (obstack, pointer, length);
+}
+
+POINTER (obstack_copy0) (obstack, pointer, length)
+ struct obstack *obstack;
+ POINTER pointer;
+ int length;
+{
+ return obstack_copy0 (obstack, pointer, length);
+}
+
+#endif /* __STDC__ */
+
+#endif /* 0 */
+
+#endif /* _LIBC or not __GNU_LIBRARY__. */
diff --git a/lib/obstack.h b/lib/obstack.h
new file mode 100644
index 000000000..01767195d
--- /dev/null
+++ b/lib/obstack.h
@@ -0,0 +1,513 @@
+/* obstack.h - object stack macros
+ Copyright (C) 1988, 89, 90, 91, 92, 93, 94 Free Software Foundation, Inc.
+
+This program is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* Summary:
+
+All the apparent functions defined here are macros. The idea
+is that you would use these pre-tested macros to solve a
+very specific set of problems, and they would run fast.
+Caution: no side-effects in arguments please!! They may be
+evaluated MANY times!!
+
+These macros operate a stack of objects. Each object starts life
+small, and may grow to maturity. (Consider building a word syllable
+by syllable.) An object can move while it is growing. Once it has
+been "finished" it never changes address again. So the "top of the
+stack" is typically an immature growing object, while the rest of the
+stack is of mature, fixed size and fixed address objects.
+
+These routines grab large chunks of memory, using a function you
+supply, called `obstack_chunk_alloc'. On occasion, they free chunks,
+by calling `obstack_chunk_free'. You must define them and declare
+them before using any obstack macros.
+
+Each independent stack is represented by a `struct obstack'.
+Each of the obstack macros expects a pointer to such a structure
+as the first argument.
+
+One motivation for this package is the problem of growing char strings
+in symbol tables. Unless you are "fascist pig with a read-only mind"
+--Gosper's immortal quote from HAKMEM item 154, out of context--you
+would not like to put any arbitrary upper limit on the length of your
+symbols.
+
+In practice this often means you will build many short symbols and a
+few long symbols. At the time you are reading a symbol you don't know
+how long it is. One traditional method is to read a symbol into a
+buffer, realloc()ating the buffer every time you try to read a symbol
+that is longer than the buffer. This is beaut, but you still will
+want to copy the symbol from the buffer to a more permanent
+symbol-table entry say about half the time.
+
+With obstacks, you can work differently. Use one obstack for all symbol
+names. As you read a symbol, grow the name in the obstack gradually.
+When the name is complete, finalize it. Then, if the symbol exists already,
+free the newly read name.
+
+The way we do this is to take a large chunk, allocating memory from
+low addresses. When you want to build a symbol in the chunk you just
+add chars above the current "high water mark" in the chunk. When you
+have finished adding chars, because you got to the end of the symbol,
+you know how long the chars are, and you can create a new object.
+Mostly the chars will not burst over the highest address of the chunk,
+because you would typically expect a chunk to be (say) 100 times as
+long as an average object.
+
+In case that isn't clear, when we have enough chars to make up
+the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
+so we just point to it where it lies. No moving of chars is
+needed and this is the second win: potentially long strings need
+never be explicitly shuffled. Once an object is formed, it does not
+change its address during its lifetime.
+
+When the chars burst over a chunk boundary, we allocate a larger
+chunk, and then copy the partly formed object from the end of the old
+chunk to the beginning of the new larger chunk. We then carry on
+accreting characters to the end of the object as we normally would.
+
+A special macro is provided to add a single char at a time to a
+growing object. This allows the use of register variables, which
+break the ordinary 'growth' macro.
+
+Summary:
+ We allocate large chunks.
+ We carve out one object at a time from the current chunk.
+ Once carved, an object never moves.
+ We are free to append data of any size to the currently
+ growing object.
+ Exactly one object is growing in an obstack at any one time.
+ You can run one obstack per control block.
+ You may have as many control blocks as you dare.
+ Because of the way we do it, you can `unwind' an obstack
+ back to a previous state. (You may remove objects much
+ as you would with a stack.)
+*/
+
+
+/* Don't do the contents of this file more than once. */
+
+#ifndef __OBSTACK_H__
+#define __OBSTACK_H__
+
+/* We use subtraction of (char *)0 instead of casting to int
+ because on word-addressable machines a simple cast to int
+ may ignore the byte-within-word field of the pointer. */
+
+#ifndef __PTR_TO_INT
+#define __PTR_TO_INT(P) ((P) - (char *)0)
+#endif
+
+#ifndef __INT_TO_PTR
+#define __INT_TO_PTR(P) ((P) + (char *)0)
+#endif
+
+/* We need the type of the resulting object. In ANSI C it is ptrdiff_t
+ but in traditional C it is usually long. If we are in ANSI C and
+ don't already have ptrdiff_t get it. */
+
+#if defined (__STDC__) && ! defined (offsetof)
+#if defined (__GNUC__) && defined (IN_GCC)
+/* On Next machine, the system's stddef.h screws up if included
+ after we have defined just ptrdiff_t, so include all of stddef.h.
+ Otherwise, define just ptrdiff_t, which is all we need. */
+#ifndef __NeXT__
+#define __need_ptrdiff_t
+#endif
+#endif
+
+#include <stddef.h>
+#endif
+
+#ifdef __STDC__
+#define PTR_INT_TYPE ptrdiff_t
+#else
+#define PTR_INT_TYPE long
+#endif
+
+struct _obstack_chunk /* Lives at front of each chunk. */
+{
+ char *limit; /* 1 past end of this chunk */
+ struct _obstack_chunk *prev; /* address of prior chunk or NULL */
+ char contents[4]; /* objects begin here */
+};
+
+struct obstack /* control current object in current chunk */
+{
+ long chunk_size; /* preferred size to allocate chunks in */
+ struct _obstack_chunk* chunk; /* address of current struct obstack_chunk */
+ char *object_base; /* address of object we are building */
+ char *next_free; /* where to add next char to current object */
+ char *chunk_limit; /* address of char after current chunk */
+ PTR_INT_TYPE temp; /* Temporary for some macros. */
+ int alignment_mask; /* Mask of alignment for each object. */
+ struct _obstack_chunk *(*chunkfun) (); /* User's fcn to allocate a chunk. */
+ void (*freefun) (); /* User's function to free a chunk. */
+ char *extra_arg; /* first arg for chunk alloc/dealloc funcs */
+ unsigned use_extra_arg:1; /* chunk alloc/dealloc funcs take extra arg */
+ unsigned maybe_empty_object:1;/* There is a possibility that the current
+ chunk contains a zero-length object. This
+ prevents freeing the chunk if we allocate
+ a bigger chunk to replace it. */
+ unsigned alloc_failed:1; /* chunk alloc func returned 0 */
+};
+
+/* Declare the external functions we use; they are in obstack.c. */
+
+#ifdef __STDC__
+extern void _obstack_newchunk (struct obstack *, int);
+extern void _obstack_free (struct obstack *, void *);
+extern int _obstack_begin (struct obstack *, int, int,
+ void *(*) (), void (*) ());
+extern int _obstack_begin_1 (struct obstack *, int, int,
+ void *(*) (), void (*) (), void *);
+#else
+extern void _obstack_newchunk ();
+extern void _obstack_free ();
+extern int _obstack_begin ();
+extern int _obstack_begin_1 ();
+#endif
+
+#ifdef __STDC__
+
+/* Do the function-declarations after the structs
+ but before defining the macros. */
+
+void obstack_init (struct obstack *obstack);
+
+void * obstack_alloc (struct obstack *obstack, int size);
+
+void * obstack_copy (struct obstack *obstack, void *address, int size);
+void * obstack_copy0 (struct obstack *obstack, void *address, int size);
+
+void obstack_free (struct obstack *obstack, void *block);
+
+void obstack_blank (struct obstack *obstack, int size);
+
+void obstack_grow (struct obstack *obstack, void *data, int size);
+void obstack_grow0 (struct obstack *obstack, void *data, int size);
+
+void obstack_1grow (struct obstack *obstack, int data_char);
+void obstack_ptr_grow (struct obstack *obstack, void *data);
+void obstack_int_grow (struct obstack *obstack, int data);
+
+void * obstack_finish (struct obstack *obstack);
+
+int obstack_object_size (struct obstack *obstack);
+
+int obstack_room (struct obstack *obstack);
+void obstack_1grow_fast (struct obstack *obstack, int data_char);
+void obstack_ptr_grow_fast (struct obstack *obstack, void *data);
+void obstack_int_grow_fast (struct obstack *obstack, int data);
+void obstack_blank_fast (struct obstack *obstack, int size);
+
+void * obstack_base (struct obstack *obstack);
+void * obstack_next_free (struct obstack *obstack);
+int obstack_alignment_mask (struct obstack *obstack);
+int obstack_chunk_size (struct obstack *obstack);
+
+#endif /* __STDC__ */
+
+/* Non-ANSI C cannot really support alternative functions for these macros,
+ so we do not declare them. */
+
+/* Pointer to beginning of object being allocated or to be allocated next.
+ Note that this might not be the final address of the object
+ because a new chunk might be needed to hold the final size. */
+
+#define obstack_base(h) ((h)->alloc_failed ? 0 : (h)->object_base)
+
+/* Size for allocating ordinary chunks. */
+
+#define obstack_chunk_size(h) ((h)->chunk_size)
+
+/* Pointer to next byte not yet allocated in current chunk. */
+
+#define obstack_next_free(h) ((h)->alloc_failed ? 0 : (h)->next_free)
+
+/* Mask specifying low bits that should be clear in address of an object. */
+
+#define obstack_alignment_mask(h) ((h)->alignment_mask)
+
+#define obstack_init(h) \
+ _obstack_begin ((h), 0, 0, \
+ (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+#define obstack_begin(h, size) \
+ _obstack_begin ((h), (size), 0, \
+ (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
+ _obstack_begin ((h), (size), (alignment), \
+ (void *(*) ()) (chunkfun), (void (*) ()) (freefun))
+
+#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+ _obstack_begin_1 ((h), (size), (alignment), \
+ (void *(*) ()) (chunkfun), (void (*) ()) (freefun), (arg))
+
+#define obstack_chunkfun(h, newchunkfun) \
+ ((h) -> chunkfun = (struct _obstack_chunk *(*)()) (newchunkfun))
+
+#define obstack_freefun(h, newfreefun) \
+ ((h) -> freefun = (void (*)()) (newfreefun))
+
+#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = achar)
+
+#define obstack_blank_fast(h,n) ((h)->next_free += (n))
+
+#if defined (__GNUC__) && defined (__STDC__)
+#if __GNUC__ < 2
+#define __extension__
+#endif
+
+/* For GNU C, if not -traditional,
+ we can define these macros to compute all args only once
+ without using a global variable.
+ Also, we can avoid using the `temp' slot, to make faster code. */
+
+#define obstack_object_size(OBSTACK) \
+ __extension__ \
+ ({ struct obstack *__o = (OBSTACK); \
+ __o->alloc_failed ? 0 : \
+ (unsigned) (__o->next_free - __o->object_base); })
+
+#define obstack_room(OBSTACK) \
+ __extension__ \
+ ({ struct obstack *__o = (OBSTACK); \
+ (unsigned) (__o->chunk_limit - __o->next_free); })
+
+#define obstack_grow(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->next_free + __len > __o->chunk_limit) \
+ _obstack_newchunk (__o, __len); \
+ if (!__o->alloc_failed) \
+ { \
+ bcopy ((char *) (where), __o->next_free, __len); \
+ __o->next_free += __len; \
+ } \
+ (void) 0; })
+
+#define obstack_grow0(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->next_free + __len + 1 > __o->chunk_limit) \
+ _obstack_newchunk (__o, __len + 1); \
+ if (!__o->alloc_failed) \
+ { \
+ bcopy ((char *) (where), __o->next_free, __len); \
+ __o->next_free += __len; \
+ *(__o->next_free)++ = 0; \
+ } \
+ (void) 0; })
+
+#define obstack_1grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + 1 > __o->chunk_limit) \
+ _obstack_newchunk (__o, 1); \
+ if (!__o->alloc_failed) \
+ *(__o->next_free)++ = (datum); \
+ (void) 0; })
+
+/* These assume that the obstack alignment is good enough for pointers or ints,
+ and that the data added so far to the current object
+ shares that much alignment. */
+
+#define obstack_ptr_grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + sizeof (void *) > __o->chunk_limit) \
+ _obstack_newchunk (__o, sizeof (void *)); \
+ if (!__o->alloc_failed) \
+ *((void **)__o->next_free)++ = ((void *)datum); \
+ (void) 0; })
+
+#define obstack_int_grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + sizeof (int) > __o->chunk_limit) \
+ _obstack_newchunk (__o, sizeof (int)); \
+ if (!__o->alloc_failed) \
+ *((int *)__o->next_free)++ = ((int)datum); \
+ (void) 0; })
+
+#define obstack_ptr_grow_fast(h,aptr) (*((void **)(h)->next_free)++ = (void *)aptr)
+#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint)
+
+#define obstack_blank(OBSTACK,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->chunk_limit - __o->next_free < __len) \
+ _obstack_newchunk (__o, __len); \
+ if (!__o->alloc_failed) \
+ __o->next_free += __len; \
+ (void) 0; })
+
+#define obstack_alloc(OBSTACK,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_blank (__h, (length)); \
+ obstack_finish (__h); })
+
+#define obstack_copy(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_grow (__h, (where), (length)); \
+ obstack_finish (__h); })
+
+#define obstack_copy0(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_grow0 (__h, (where), (length)); \
+ obstack_finish (__h); })
+
+/* The local variable is named __o1 to avoid a name conflict
+ when obstack_blank is called. */
+#define obstack_finish(OBSTACK) \
+__extension__ \
+({ struct obstack *__o1 = (OBSTACK); \
+ void *value; \
+ if (__o1->alloc_failed) \
+ value = 0; \
+ else \
+ { \
+ value = (void *) __o1->object_base; \
+ if (__o1->next_free == value) \
+ __o1->maybe_empty_object = 1; \
+ __o1->next_free \
+ = __INT_TO_PTR ((__PTR_TO_INT (__o1->next_free)+__o1->alignment_mask)\
+ & ~ (__o1->alignment_mask)); \
+ if (__o1->next_free - (char *)__o1->chunk \
+ > __o1->chunk_limit - (char *)__o1->chunk) \
+ __o1->next_free = __o1->chunk_limit; \
+ __o1->object_base = __o1->next_free; \
+ } \
+ value; })
+
+#define obstack_free(OBSTACK, OBJ) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ void *__obj = (OBJ); \
+ if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \
+ __o->next_free = __o->object_base = __obj; \
+ else (obstack_free) (__o, __obj); })
+
+#else /* not __GNUC__ or not __STDC__ */
+
+#define obstack_object_size(h) \
+ (unsigned) ((h)->alloc_failed ? 0 : (h)->next_free - (h)->object_base)
+
+#define obstack_room(h) \
+ (unsigned) ((h)->chunk_limit - (h)->next_free)
+
+/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
+ so that we can avoid having void expressions
+ in the arms of the conditional expression.
+ Casting the third operand to void was tried before,
+ but some compilers won't accept it. */
+
+#define obstack_grow(h,where,length) \
+( (h)->temp = (length), \
+ (((h)->next_free + (h)->temp > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ (bcopy ((char *) (where), (h)->next_free, (h)->temp), \
+ (h)->next_free += (h)->temp)))
+
+#define obstack_grow0(h,where,length) \
+( (h)->temp = (length), \
+ (((h)->next_free + (h)->temp + 1 > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), (h)->temp + 1), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ (bcopy ((char *) (where), (h)->next_free, (h)->temp), \
+ (h)->next_free += (h)->temp, \
+ *((h)->next_free)++ = 0)))
+
+#define obstack_1grow(h,datum) \
+( (((h)->next_free + 1 > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), 1), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ (*((h)->next_free)++ = (datum))))
+
+#define obstack_ptr_grow(h,datum) \
+( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ (*((char **)(((h)->next_free+=sizeof(char *))-sizeof(char *))) = ((char *)datum))))
+
+#define obstack_int_grow(h,datum) \
+( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ (*((int *)(((h)->next_free+=sizeof(int))-sizeof(int))) = ((int)datum))))
+
+#define obstack_ptr_grow_fast(h,aptr) (*((char **)(h)->next_free)++ = (char *)aptr)
+#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint)
+
+#define obstack_blank(h,length) \
+( (h)->temp = (length), \
+ (((h)->chunk_limit - (h)->next_free < (h)->temp) \
+ ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \
+ ((h)->alloc_failed ? 0 : \
+ ((h)->next_free += (h)->temp)))
+
+#define obstack_alloc(h,length) \
+ (obstack_blank ((h), (length)), obstack_finish ((h)))
+
+#define obstack_copy(h,where,length) \
+ (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
+
+#define obstack_copy0(h,where,length) \
+ (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
+
+#define obstack_finish(h) \
+( (h)->alloc_failed ? 0 : \
+ (((h)->next_free == (h)->object_base \
+ ? (((h)->maybe_empty_object = 1), 0) \
+ : 0), \
+ (h)->temp = __PTR_TO_INT ((h)->object_base), \
+ (h)->next_free \
+ = __INT_TO_PTR ((__PTR_TO_INT ((h)->next_free)+(h)->alignment_mask) \
+ & ~ ((h)->alignment_mask)), \
+ (((h)->next_free - (char *)(h)->chunk \
+ > (h)->chunk_limit - (char *)(h)->chunk) \
+ ? ((h)->next_free = (h)->chunk_limit) : 0), \
+ (h)->object_base = (h)->next_free, \
+ __INT_TO_PTR ((h)->temp)))
+
+#ifdef __STDC__
+#define obstack_free(h,obj) \
+( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \
+ (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+ ? (int) ((h)->next_free = (h)->object_base \
+ = (h)->temp + (char *) (h)->chunk) \
+ : (((obstack_free) ((h), (h)->temp + (char *) (h)->chunk), 0), 0)))
+#else
+#define obstack_free(h,obj) \
+( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \
+ (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+ ? (int) ((h)->next_free = (h)->object_base \
+ = (h)->temp + (char *) (h)->chunk) \
+ : (_obstack_free ((h), (h)->temp + (char *) (h)->chunk), 0)))
+#endif
+
+#endif /* not __GNUC__ or not __STDC__ */
+
+#endif /* not __OBSTACK_H__ */